GERADOR DE FUNÇÃO ARBITRÁRIA Arbitrary Function Generator Generador de Función Arbitraria MFG-4225

* Imagem meramente ilustrativa./Only illustrative image./Imagen meramente ilustrativa.

MANUAL DE INSTRUÇÕES Instructions Manual Manual de Instrucciones

SUMÁRIO

1) VISÃO GERAL	02
2) ACESSÓRIOS	03
3) INFORMAÇÕES DE SEGURANCA	03
4) REGRAS PARA OPERAÇÃO SEGURA	03
5) SÍMBOLOS ELÉTRICOS INTERNACIONAIS	04
6) DESCRIÇÃO DO PRODUTO	04
A. Descrição do Painel Frontal	04
B. Descrição do Painel Traseiro	05
C. Símbolos do Display	05
7) CONFIGURAÇÃO DÓ INSTRUMENTO	06
A. Configurando a Forma de Onda	06
B. Configurando Modulação. Varredura. Burst	.09
C. Configurando a Saída	10
D. Usando a Saída Digital	
E. Usando as Funções Store/Utility/Help	
8) MODO DE OPERAÇÃO	
A. Configurar Sinais Senoidais	
B. Configurar Sinais Quadrados	
C. Configurar Sinais de Rampa	
D. Configurar Sinais de Pulso.	
E. Configurar Sinais de Ruído	
F. Configurar Sinais Arbitrários	
G. Gerar Formas de Onda Moduladas	
H. Gerar Varredura	
I. Gerar Burst	
J. Armazenar e Visualizar	
K. Configurar a Função Utility	
L. Pontos Importantes	
M. Teste e Calibração	
N. Atualização de Firmware	
O. Como usar o Sistema de Ajuda	
9) APLICAÇÃO E EXEMPLOS	
A. Exemplo 1: Geração de Onda Senoidal	
B. Exemplo 2: Geração de Onda Quadrada	
C. Exemplo 3: Geração de Onda de Rampa	
D. Exemplo 4: Geração de Onda de Pulso	
E. Exemplo 5: Geração de Onda de Ruído	
F. Exemplo 6: Geração de Onda Arbitrária	
G. Exemplo 7: Geração de Onda de Varredura Linear	
H. Exemplo 8: Geração de Onda de Burst	
I. Exemplo 9: Geração de Onda AM	
J. Exemplo 10: Geração de Onda FM	
K. Exemplo 11: Geração de Onda PM	
L. Exemplo 12: Geração de Onda FSK	
M: Exemplo 13: Geração de Onda ASK	
N. Exemplo 14: Geração de Onda PWM	
O. Exemplo 15: Geração de Onda DSB-AM	
10) ESPECIFICAÇOES	60
A. Especificações Gerais	60
B. Especificações Elétricas	
11) MANUTENÇAO	
A. Inspeção Geral	
B. Solução de Problemas	
C. Limpeza	
12) GARANTIA	67
A. Cadastro do Certificado de Garantia	

1) VISÃO GERAL

O Gerador de Função Arbitrária modelo MFG-4225 (daqui em diante referido como instrumento) adota a tecnologia DDS (Direct Digital Synthesis ou Síntese Direta Digital), que proporciona estabilidade, alta precisão, sinais puros ou com baixa distorção. É a combinação de um excelente sistema com facilidade de uso e funções versáteis que fazem desse instrumento uma solução perfeita para o seu trabalho agora e no futuro.

Este instrumento possui um painel frontal simples e limpo. O layout amistoso do painel, a versatilidade dos terminais, a interface gráfica direta, as instruções embutidas e o sistema de ajuda tornam a operação muito mais simplificada, fazendo com que o usuário gaste pouco tempo para aprender e se familiarizar com a operação do instrumento antes de usá-lo com eficiência. As funções de modulação AM, FM, PM, ASK, FSK e PWM podem gerar formas de onda moduladas à vontade, sem a necessidade de uma fonte modulada separada. As interfaces USB e I/O são acessórios padrões, enquanto que a interface GPIB é opcional. As instruções remotas encontram-se nos requisitos de especificação SCPI.

A partir das características e especificações descritas abaixo, você entenderá porque o MFG-4225 pode satisfazer seus requisitos.

- Tecnologia DDS fornece precisão, estabilidade e saída de sinal de baixa distorção.
- Display LCD TFT Colorido de 3,5".
- Taxa de Amostragem de 125MS/s, com resolução de 14bits.
- Características de Frequência: Senoidal: 1µHz a 25MHz Quadrada: 1µHz a 25MHz Rampa: 1µHz a 300kHz Pulso: 500µHz a 5MHz Ruído Branco: largura de banda de 25MHz (-3dB) Arbitrária: 1µHz a 5MHz
- 5 Formas de Onda Padrão: Senoidal, Quadrada, Rampa, Pulso e Ruído.
- Forma de Onda Arbitrária Automática.
- Múltiplas Funções de Modulação: AM, FM, PM, ASK, FSK, PWM, DSB-AM, Varredura e Burst.
- Múltiplos I/O: Fonte de Modulação Externa, Entrada de Referência Externa de 10MHz, Fonte de Trigger Externo, Saída de Forma de Onda e Saída de Sinal Síncrono.
- Suporta dispositivo de armazenamento USB. A atualização do software também pode ser realizada usando dispositivos USB.
- Até 16k pontos de amostra para forma de onda interna, o que pode reconstruir ou simular qualquer forma de onda complexa.
- Conectividade remota é realizada através da interface USB.
- Múltiplas interfaces: USB host e device, GPIB (IEEE-488) Opcional.
- Suporta conexão direta com osciloscópios digitais, possibilitando a leitura e a reconstrução de formas de onda armazenadas no osciloscópio.
- Interface e ajuda ao usuário em dois idiomas: Inglês e Chinês.

2) ACESSÓRIOS

Abra a caixa e retire o instrumento. Verifique se os seguintes itens estão em falta ou danificados:

Item	Descrição	Qtde.
1	Manual de Instruções	1 cópia
2	Cartão de Garantia	1 cópia
3	CD com Software	1 cópia
4	Cabo de Alimentação	1 peça
5	Cabo USB	1 peça

No caso da falta de algum componente ou que esteja danificado, entre em contato imediatamente com o revendedor.

3) INFORMAÇÕES DE SEGURANÇA

- Use o cabo de alimentação adequado. Use apenas o cabo de alimentação específico aprovado pelo Estado onde o instrumento será usado.
- Aterre o instrumento. Este gerador é aterrado através do condutor de proteção terra do cabo de alimentação. Para evitar choques elétricos, o condutor terra deve ser conectado ao solo. Assegure-se que o instrumento está apropriadamente aterrado antes de conectar sinais aos terminais de entrada e saída.
- Observe todos os valores nos terminais. Para evitar incêndio ou choque elétrico, observe todos os valores e símbolos marcados no instrumento. Leia o manual de instruções cuidadosamente antes de fazer conexões no instrumento.
- Não opere sem o gabinete. Não opere o instrumento com o gabinete ou painéis removidos.
- Evite circuitos ou fios expostos. Não toque conexões ou componentes expostos quando estiverem energizados.
- Não opere o instrumento quando houver suspeitas de falhas. Se você suspeita que existem danos no instrumento, ele deve ser inspecionado por uma pessoa qualificada autorizada pela Minipa antes de voltar a operar.
- Forneça uma ventilação adequada.
- Não opere em locais úmidos ou molhados.
- Não opere em atmosferas explosivas.
- Mantenha a superfície do instrumento sempre limpa e seca.

4) REGRAS PARA OPERAÇÃO SEGURA

⚠ ADVERTÊNCIA

Para evitar possíveis choques elétricos ou ferimentos pessoais, danos ao instrumento ou ao equipamento em teste, siga as seguintes regras:

1. Procure por danos na embalagem.

Se houverem danos na embalagem ou na espuma, guarde-os até que o instrumento e os acessórios passem nos testes elétricos e mecânicos.

2. Verifique os acessórios.

Caso o conteúdo esteja incompleto ou danificado, notifique seu revendedor.

3. Inspecione o instrumento

No caso de dano mecânico ou defeito, instrumento inoperante ou reprovação nos testes de desempenho, notifique seu revendedor. Se a embalagem estiver danificada ou o material de amortecimento mostrar sinais de pressão, notifique o carregador e a loja. Guarde a embalagem para a inspeção do carregador. A loja irá providenciar o reparo ou a substituição sem a necessidade de aguardar por uma reinvidicação.

5) SÍMBOLOS ELÉTRICOS INTERNACIONAIS

Termos que podem aparecer neste manual de instruções:

\triangle	Refira-se ao Manual de Instruções
4	Perigo de alta tensão
느	Terra
	Terra de Proteção

Termos que podem aparecer no produto:

PERIGO: Indica dano ou perigo em potencial que pode ocorrer imediatamente. **ADVERTÊNCIA:** Indica dano ou perigo em potencial que pode ocorrer, mas não imediatamente. **CAUTELA:** Indica dano em potencial ao instrumento ou a outra propriedade.

ADVERTÊNCIA: Esta mensagem identifica condições ou práticas que podem resultar em danos pessoais ou até a perda da vida.

CAUTELA: Esta mensagem identifica condições ou práticas que podem resultar em danos ao instrumento ou outras propriedades.

6) DESCRIÇÃO DO PRODUTO

A. Descrição do Painel Frontal

Figura 1.1

- 1- Entrada USB
- 2- Botão para ligar
- 3- Display LCD
- 4- Menu de Operação
- 5- Teclas de Forma de Onda
- 6- Teclas Numéricas
- 7- Teclas Funcionais
- 8- Controle de saídas
- 9- Teclas Direcionais
- 10- Chave Rotativa

B. Descrição do Painel Traseiro

Figura 1.2

- Entrada de 10MHz
- Saída Síncrona
- Entrada de Modulação
- Entrada Externa para Trigger/Gate/FSK/Burst
- USB Host
- Soquete para Alimentação

C. Símbolos do Display

Figura 1.3

- Janela da Forma de Onda
- Parâmetro exibido e Janela de Edição
- Menu Operacional: diferentes funções têm diferentes menus.

7) CONFIGURAÇÃO DO INSTRUMENTO

Definição dos caracteres neste manual:

Os símbolos dos botões neste manual são iguais aos símbolos no painel do instrumento. Note que os símbolos dos botões funcionais no painel operacional são representados por palavras enquadradas, como **Sine**, que representa a tecla funcional transparente com "Sine" no painel frontal, enquanto que os botões dos menus são representados por palavras acinzentadas como **Freq**, que significa a opção "Frequência" no menu "Sine".

A. Configurando a Forma de Onda

Há um conjunto de botões com ícones de forma de onda no painel operacional. Veja a Figura 2.1. Os exemplos abaixo irão ajudá-lo a familiarizar-se com as configurações de seleção de forma de onda.

Figura 2.1

1. Pressione o botão Sine e a janela de forma de onda exibirá uma forma de onda senoidal. O MFG-4225 pode gerar um sinal senoidal com frequência de 1µHz a 50MHz. Pelas configurações de frequência/ período, amplitude/nível alto, compensação/nível baixo, podem ser gerados sinais senoidais com diferentes parâmetros.

Sine CH2	Sine CH1	Sine
Ampl K	-1.000 000MHz	Freq Period
0.0mVdc *		Ampl
±		HLevel
		Offset
CH1 Waveform	Load : Hi-Z	LLevel
Frequency	1.000 000MHz	Phase
Amp1 4.000Vpp	Phase (),()°	EqPhase
Offset().()mVdc		

Figura 2.2

Como mostra a Figura 2.2, os parâmetros de fábrica para sinal senoidal são: frequência de 1kHz, amplitude de 4.0Vpp e compensação de 0VDC.

2. Pressione o botão Square e a janela de forma de onda exibirá uma forma de onda quadrada. O instrumento pode gerar um sinal quadrado com frequência de 1µHz a 25MHz e duty cycle variável.

Sine CH2	Square CH1	Square
Duty H	-1.000 000MHz	Freq Period
0.0mVdc *	±	Ampl HLevel
		Offset
CH1 Waveform	Load: Hi-Z	LLevel
Frequency	1.000 000MHz	Phase
Amp1 4.000Unn	Phase ()_()°	EqPhase
Offset().()mVdC	Duty <mark>5</mark> 0.0%	Duty

Figura 2.3

Como mostra a Figura 2.3, os parâmetros de fábrica para sinal quadrado são: frequência de 1kHz, amplitude de 4.0Vpp, compensação de 0Vdc e 50% de duty cycle.

Pressione o botão (Ramp) e a janela de forma de onda exibirá uma forma de onda de rampa. O instrumento pode gerar um sinal de rampa com frequência de 1µHz a 300kHz e simetria variável.

Sine CH2	Ramp	CH1	Ramp
Frequency H	- 1 000 000kH	z≱Ì	Freq
4.000Vpp ↑			Period
0.0mVdc *		*	Ampl
±	1 ∩% —→I		HLevel
			Offset
CH1 Waveform	Load	Hi-Z	LLevel
Frequency	1 .000 000	kHz	Phase
Amp1 4.000Upp	Phase ()	0°	EqPhase
Offset().OmUdr	Syme 5()	0.02	Symmetry

Figura 2.4

Como mostra a Figura 2.4, os parâmetros de fábrica para esse tipo de sinal são: frequência de 1kHz, amplitude de 4.0Vpp, compensação de 0Vdc e simetria 50%.

4. Pressione o botão Pulse e a janela da forma de onda exibirá uma forma de onda de pulso. O instrumento pode gerar sinal de pulso com frequência de 500µHz a 5MHz, largura de pulso variável e delay.

Sine CH2	Pulse CH1	Pulse
	4 000 000111	Freq
Width +	-1.000 000kHz	Period
0.0mVdc ¥	<u> </u>	Ampl
	200 Aus	HLevel
	-001040	Offset
CH1 Waveform	Load: Hi-Z	LLevel
Frequency	1.000 000kHz	PulWidth
Amp1 4.000Upp	Width 200.00S	Duty
Offset().()mVdC	Delay 0.005	Delay

Figura 2.5

Como mostra a Figura 2.5, os parâmetros de fábrica para esse sinal são: frequência de 1kHz, amplitude de 4.0Vpp, compensação de 0Vdc e largura de pulso de 200µs.

5. Pressione o botão Noise e a janela de forma de onda exibirá uma forma de onda de ruído. O instrumento pode gerar um sinal de ruído com uma largura de banda de até 50MHz.

Sine CH2	Noise	CH1	Noise
Mean 1.000V Ťu			
10.0mV ≭ ↓₩₩-₩	<mark>₽,√ -4}₽<mark> </mark> 4⁻ </mark>	₩	Stdev
CH1 Waveform	Load :	Hi-Z	Mean
Stdev 1.0000			
Mean <mark>10.0mU</mark>			

Figura 2.6

Como mostra a Figura 2.6, os parâmetros de fábrica do sinal são: variância de 1.0V e média de 10mV.

6. Pressione o botão Amele a janela de forma de onda exibirá uma forma de onda arbitrária. O instrumento é capaz de gerar sinais de forma de onda arbitrária periódica com no máximo 16k pontos e 5MHz.

Figura 2.7

Como mostra a Figura 2.7, os parâmetros de fábrica para esse sinal são: frequência de 1kHz, amplitude de 4.0Vpp e compensação de 0mVdc.

B. Configurando Modulação, Varredura, Burst

Como mostra a Figura 2.8, existem três botões no painel frontal que são usados nas configurações de modulação, varredura e burst. As instruções abaixo irão ajudá-lo a familiarizar-se com a configuração dessas funções.

Figura 2.8

1. Pressione o botão Mod para gerar uma forma de onda modulada. A forma de onda pode ser alterada pela modificação de parâmetros como tipo, modulação interna/externa, profundidade, frequência, forma de onda, etc. O MFG-4225 pode modular formas de onda usando AM, FM, ASK, FSK, PM, PWM e DSB-AM. As formas de onda senoidal, quadrada, rampa e arbitrária podem ser moduladas. Já as formas de onda de pulso, ruído e DC não podem ser moduladas.

Sine CH2	Arb CH1	Mod
Type H	<mark>1</mark> 00.000Hz	AM Freq
Type AM Shape Sine	Marco	AM Depth
Source Internal		Туре
AM Mod	Load : Hi-Z	AM
AM Freq	100 0000-	Shape
ini iicq		Sine
Ener 4 0001.0-	Amp 1 4 0000	Source
Tred T.MANKHZ	4.000vpp	Internal

Figura 2.9

2. Pressione o botão Sweep e as formas de onda senoidal, quadrada, rampa e arbitrária podem ser escaneadas. As formas de onda de pulso, ruído e DC não podem ser escaneadas. No modo de varredura, o instrumento pode gerar sinais com frequências variáveis.

Sine CH2	Arb	CH1	Sweep
Sweep Time K	<mark>— 1</mark> .000s - ллллл	A Andre	SwpTime
1.000kHz * 1/1/ 1.000kHz * 1/1/	VVVI	TVV .	StopFreq ErgSpap
Source Internal			StartFreq
Arb Sweep	Load	:Hi-Z	MidFreq
Sweep Time	1.000s		Source
			Incernal
^{Freq} 1.000kHz	Amp1 4.()00Vpp	1/2 ↓
F	igura 2.10		

3. Pressione o botão **Burst**. O instrumento poderá gerar formas de onda com burst do tipo senoidal, quadrada, rampa, pulso ou arbitrária.

Sine CH2	Sine CH1	Burst
Pulse Period	10.000ms→	Period
0.0° + Type N Cycle		StartPhase
Source Internal		Ncycle
Sine Burst	Load : Hi-Z	Gated
Pulse Period	10 000ms	Source
		Internal
E	Ame 1 4 AAAU	1/2
rreq 1.000KHZ	HMP1 4.0000pp	¥

Figura 2.11

C. Configurando a Saída

Como mostra a Figura 2.12, o painel operacional possui dois botões do lado direito para controlar as saídas. As instruções abaixo irão ajudá-lo a familiarizar-se com essas funções.

Figura 2.12

Pressione o botão Output para ativar ou desativar o sinal de saída.

D. Usando a Entrada Digital

Como mostra a Figura 2.13, existem três conjuntos de botões no painel operacional: as setas direcionais, a chave rotativa e o teclado. As instruções abaixo irão ajudá-lo a familiarizar-se com a função de entrada digital.

Figura 2.13

- 1. As teclas para cima/baixo são usadas para alterar os parâmetros e as teclas para esquerda/direita são usadas para alterar os dígitos.
- 2. O teclado é usado para configurar diretamente os valores dos parâmetros.
- 3. A chave rotativa é usada para mudar um dígito do valor do sinal entre 0 e 9.

E. Usando as Funções Store/Utility/Help

Como mostra a Figura 2.14, há três botões no painel operacional que são usados para chamar as funções Store/Recall, Utility e Help. As instruções abaixo irão ajudá-lo a familiarizar-se com essas funções.

Figura 2.14

- O botão Store/Recall) é usado para armazenar dados de formas de onda e informações de configuração.
- 2. O botão Utility) é usado para configurar as funções auxiliares do sistema, alterar as configurações dos parâmetros de saída, configurar a interface, visualizar as informações de configuração do sistema ou fazer com que o instrumento realize um auto-teste e mostre as informações de calibração, etc.
- 3. O botão Help é usado para exibir informações de ajuda.

8) MODO DE OPERAÇÃO

A. Configurar Sinais Senoidais

Pressione o botão **Sine** para habilitar a função senoidal. Os parâmetros da forma de onda senoidal são configurados usando o menu de operação senoidal.

Os parâmetros de formas de onda senoidais são: frequência/período, amplitude/alto nível, compensação/ baixo nível e fase. Podem ser gerados diferentes sinais senoidais pela configuração desses parâmetros. Como mostra a Figura 3.1, no menu da tecla lisa, selecione "Freq.". O cursor está localizado na área do parâmetro de frequência na janela de parâmetros. O usuário pode configurar o valor de frequência nesta função.

Figura 3.1

Tabela 1 - Notas Explicativas para Forma de Onda Senoidal

Função	Nota Explicativa
Freq/Period	Configura a frequência ou o período do sinal;
	O parâmetro atual será trocado se a tecla for pressionada novamente.
Ampl/HLevel	Configura a amplitude ou o alto nível do sinal;
	O parâmetro atual será trocado se a tecla for pressionada novamente.
Offset/LLevel	Configura a compensação ou o baixo nível;
	O parâmetro atual será trocado se a tecla for pressionada novamente.
Phase/	Configura a fase do sinal;
EqPhase	O parâmetro atual será trocado se a tecla for pressionada novamente.

Figura 3.2

1. Configurando a Saída de Frequência/Período

1. Pressione Sine → Freq, para configurar os parâmetros de frequência.

A frequência exibida na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando configurada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente. Se você quiser configurar o período para a forma de onda, pressione o botão Freq/Period novamente para alterar o parâmetro para Período (a operação atual é exibida em cor inversa).

2. Insira a frequência desejada.

Use o teclado para inserir o valor de frequência diretamente e pressione o botão correspondente para selecionar a unidade do parâmetro. Você também pode usar as setas direcionais para selecionar o dígito que deseja editar e então usar a chave rotativa para alterar o valor.

Figura 3.3

2. Configurando a Saída de Amplitude

1. Pressione Sine \rightarrow Ampl para configurar a amplitude.

A amplitude exibida na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente. Se você quiser configurar a forma de onda por nível alto ou baixo, pressione o botão Ampl/HLevel ou Offset/LLevel novamente para alterar o nível alto ou baixo dentro do parâmetro (a operação atual é exibida na cor inversa).

2. Insira a amplitude desejada.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente.

Figura 3.4

3. Configurando a Saída de Compensação

1. Pressione Sine → Offset para configurar a compensação.

A compensação exibida na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente.

2. Insira a compensação desejada.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente.

Figura 3.5

B. Configurar Sinais Quadrados

Pressione o botão Square para acionar a função "Square". Os parâmetros da forma de onda quadrada são configurados usando o menu de operação Square.

Os parâmetros da forma de onda quadrada são: frequência/período, amplitude/alto nível, compensação/baixo nível, fase e duty cycle. Como mostra a Figura 3.6, selecione Duty.

O cursor está localizado na área do parâmetro "Duty" na janela de parâmetros, e o usuário pode, então, configurar o valor de duty cycle.

Sine CH2	Square CH1	Square
Duty H	-1.000 000kHz+	Freq Period
0.0mVdc ¥↓ ⊮—j	<u>±</u>).0%—→I	Ampl HLevel
CH1 Waveform	Load: Hi-Z	Offset LLevel
Frequency	1.000 000kHz	Phase
Amp1 4.000Upp	Phase (),()°	EqPhase
offset().()mVdc	Duty <mark>5</mark> 0.0%	Duty

Fun	ção	Nota Explicativa
Freq/P	eriod	Configura a frequência ou o período do sinal. O parâmetro atual será tro- cado se a tecla for pressionada novamente.
Ampl/H	Level	Configura a amplitude ou o alto nível. O parâmetro atual será trocado se a tecla for pressionada novamente.
Offset/	LLevel	Configura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
Phase EqPha	se	Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
Duty		Configura o duty cycle da forma de onda quadrada.

1. Configurando o Duty Cycle

1. Pressione Square \rightarrow Duty para configurar o duty cycle.

O duty cycle exibido na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente.

2. Insira o duty cycle desejado.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente. O instrumento irá alterar a forma de onda imediatamente.

Figura 3.8

C. Configurar Sinais de Rampa

Pressione o botão (Ramp) para acionar a função "Ramp". Os parâmetros de forma de onda tipo rampa são configurados usando o menu de operação Ramp.

Os parâmetros para forma de onda de rampa são: frequência/período, amplitude/alto nível, compensação/baixo nível, fase e simetria. Como mostra a Figura 3.9, no menu da tecla lisa, selecione "Symmetry". O cursor estará localizado na área do parâmetro de simetria na janela de parâmetros, e o usuário pode, então, configurar o valor de simetria.

Sine CH2	Sine CH1	Sine
Ampl K	1.000 000MHz	Freq Period
		Ampl
±		HLevel
		Offset
CH1 Waveform	Load: Hi-Z	LLevel
Frequency	1.000 000MHz	Phase
Ampl 4 AAAUnn	Phase ≬ ≬°	EqPhase
	VIV	
UTISET V. UMVAC		

Figura 3.9

Tabela 3 - Notas Explicativas para Forma de Onda Tipo Rampa

FunçãoNota ExplicativaFreq/PeriodConfigura a frequência ou o período do sinal. O parâmetro atual será tro- cado se a tecla for pressionada novamente.Ampl/HLevelConfigura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Offset/LLevelConfigura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/ EqPhaseConfigura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.SymmetryConfigura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.	n		
Freq/PeriodConfigura a frequência ou o período do sinal. O parâmetro atual será tro- cado se a tecla for pressionada novamente.Ampl/HLevelConfigura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Offset/LLevelConfigura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.SymmetryConfigura a simetria da forma de onda tipo rampa.		Função	Nota Explicativa
Ampl/HLevelConfigura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Offset/LLevelConfigura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.SymmetryConfigura a simetria da forma de onda tipo rampa.		Freq/Period	Configura a frequência ou o período do sinal. O parâmetro atual será tro- cado se a tecla for pressionada novamente.
Offset/LLevelConfigura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.Phase/Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.EqPhasepressionada novamente.SymmetryConfigura a simetria da forma de onda tipo rampa.		Ampl/HLevel	Configura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
Phase/ EqPhaseConfigura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.SymmetryConfigura a simetria da forma de onda tipo rampa.		Offset/LLevel	Configura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
Symmetry Configura a simetria da forma de onda tipo rampa.		Phase/ EqPhase	Configura a fase do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
		Symmetry	Configura a simetria da forma de onda tipo rampa.

Figura 3.10

1. Configurando a Simetria

1. Pressione Ramp - Symmetry, para configurar a simetria.

A simetria exibida na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente.

2. Insira a simetria desejada.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente. O instrumento irá alterar a forma de onda logo em seguida.

Figura 3.11

D. Configurar Sinais de Pulso

Pressione o botão **Pulse** para acionar a função "Pulse". Os parâmetros da forma de onda de pulso são configurados usando o menu de operação Pulse.

Os parâmetros para formas de onda de pulso são: frequência/período, amplitude/alto nível, compensação/baixo nível, largura de pulso e delay. Como mostra a Figura 3.12, no menu da tecla lisa, selecione PulWidth. O cursor estará localizado na área do parâmetro de largura de pulso na janela de parâmetros, e o usuário pode, então, configurar o valor da largura de pulso.

Sine CH2	Pulse CH1	Pulse
Width K	1.000 000kHz	Freq Period
0.0mVdc *	<u>*</u>	Ampl HLevel
	200.0us	Offset
CH1 Waveform	Load : Hi-Z	LLevel
Frequency	1.000 000kHz	PulWidth
Amp1 4.000Vpp	width 200.00s	Duty
Offset().OmVdC	Delay 0.00S	Delay

Tabela 4 - Notas Explicativas para Forma de Onda de Pulso

Erez	Tubera + Hotas Exploativas para Forma de Orida de Fuiso		
Period	Função	Nota Explicativa	
Ampl HLavel	Freq/Period	Configura a frequência ou o período do sinal. O parâmetro atual será tro- cado se a tecla for pressionada novamente.	
Offset	Ampl/HLevel	Configura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.	
PuWidth	Offset/LLevel	Configura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.	
Delay	PulWidth/ Duty	Configura a largura de pulso ou o duty cycle do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.	
	Delay	Configura o delay da forma de onda de pulso.	

Figura 3.13

Pulse

1. Configurando a Largura de Pulso

1. Pressione Pulse → PulWidth para configurar a largura de pulso.

A largura de pulso exibida na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual for válido para a nova forma de onda, ele será usado sequencialmente.

2. Insira a largura de pulso desejada.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente. O instrumento irá alterar a forma de onda logo em seguida.

Sine	CH2	Pulse	CH1	Unit
Width 4.000Vpp	₩	-1.000 000kH	z — →	S
0.0mVdc	*	2 00 Aus	<u>*</u>	MS
	•	20010113		us
CH1 Wave	form	Load :	Hi-Z	
[200			ns
				Cancel

Figura 3.14

2. Configurando o Delay

1. Pressione Pulse Delay para configurar o delay.

O delay exibido na tela quando o instrumento é ligado é o valor padrão ou o valor configurado anteriormente. Quando alterada a função, se o valor atual é válido para a nova forma de onda, ele será usado sequencialmente.

2. Insira o delay desejado.

Use o teclado ou a chave rotativa para inserir o valor desejado. Escolha a unidade e pressione o botão correspondente. O instrumento irá alterar a forma de onda logo em seguida.

Figura 3.15

E. Configurar Sinais de Ruído

Pressione o botão Noise para acionar a função "Gaussian White Noise". Os parâmetros da forma de onda de ruído são configurados usando o menu de operação Noise.

Os parâmetros para formas de onda de ruído são: variância e média. Como mostra a Figura 3.16, no menu da tecla lisa, selecione Variância. O cursor estará localizado na área do parâmetro de variância na janela de parâmetros, e o usuário pode, então, configurar o valor de variância. Um sinal de ruído é um tipo de sinal não regulado que não possui frequência ou período.

Sine	CH2	Noise	CH1	Noise
Mean 1.000V	₹			
10.0mV	≵│ ₩ ₩	<mark>⋫⋴⋓⋎<mark>⋹</mark>⋫⋏<mark>⋼</mark>⋺⋓</mark>		Stdev
CH1 Wave	form	Load :	Hi-Z	Mean
Stdev 1	.000V			
Mean <mark>1</mark>).OmV			

Figura 3.16

Noise	
Variance	
Mean	

Tabela 5 - Notas Explicativas para Formas de Onda de Ruído

Função	Nota Explicativa
Variância	Configura a variância do sinal.
Média	Configura a média do sinal.

Figura 3.17

F. Configurar Sinais Arbitrários

Pressione o botão (Arb) para acionar a operação "Arb". Os parâmetros da forma de onda arbitrária são configurados usando o menu de operação Arb.

O sinal arbitrário consiste em dois tipos: o sistema embutido de forma de onda e forma de onda programável pelo usuário. Os parâmetros para formas de onda arbitrárias são: frequência/período, amplitude/alto nível, compensação/baixo nível e fase.

Arb	Arb	Tabela 6 - Notas	Explicativas para Formas de Onda Arbitrárias
Freq	1	Função	Nota Explicativa
Period Ampl	2/2 Losd	Freq/Period	Configura a frequência ou o período do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
HLovel Offset	Wform	Ampl/HLevel	Configura a amplitude ou o alto nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
LLevel Phase		Offset/LLevel	Configura a compensação ou o baixo nível do sinal. O parâmetro atual será trocado se a tecla for pressionada novamente.
EgPhase		Phase/EqPha-	Configura a fase do sinal. O parâmetro atual será trocado se a
1/2		se	tecla for pressionada novamente.
4		Load Waveform	Seleciona o sinal arbitrário embutido como saída.
	10	Load vvaveform	Seleciona o sinal arbitrario emputido como salda.

1. Selecionando Forma de Onda Arbitrária Embutida

Existem 48 formas de onda arbitrárias embutidas e formas de onda programáveis pelo usuário no instrumento. Para selecionar uma delas, siga as instruções abaixo.

Função	Nota Explicativa
Built-in	Seleciona uma das 48 formas de onda arbitrárias embutidas.
Stored Wforms	Seleciona uma das formas de onda embutidas armazenadas na mem ria não-volátil.
Cancel	Cancela a operação atual e retorna ao menu acima.

1. Pressione Arb -- Load Wform para entrar no menu a seguir.

Figura 3.20

Cancel

Selecionar a Forma de Onda Embutida

Função	Nota Explicativa
Common	Seleciona forma de onda comum.
Math	Seleciona forma de onda matemática.
Project	Seleciona projeto de forma de onda.
Ninfun/Triangle	Seleciona função janela/forma de onda triangular.
Select	Valida a forma de onda embutida.

Figura 3.21

Select

Para cada opção do menu, há um submenu de configurações.

Menu Common

	Sine	CH2	Arb	CH1	Arb
9	StairUp	StairDn	StairUD	PPulse	Common
Ν	VPulse	Trapezia	UpRamp	DnRamp	Math
CH	11 Wave	eform	Loa	d: Hi-Z	Project
Frequency Ampl 4 00011mm		1.000 00 Phase	DOkHz o. o°	Winfun\ Triangle	
Of	fset	.OmVdc		0.0	Select

Figura 3.22

Tabela 9 - Notas Explicativas para Forma de Onda Arbitrária Comum

Função	Nota Explicativa
StairUp	Seleciona a forma de onda de degraus subindo.
StairDn	Seleciona a forma de onda de degraus descendo.
StairUD	Seleciona a forma de onda de degraus subindo e descendo.
PPulse	Seleciona a forma de onda com pulso positivo.
NPulse	Seleciona a forma de onda com pulso negativo.
Trapezia	Seleciona a forma de onda de trapézio.
UpRamp	Seleciona a forma de onda de rampa subindo.
DnRamp	Seleciona a forma de onda de rampa descendo.

Menu Math

	Sine	CH2	Arb	CH1	Arb
					_
	ExpFall	ExpRise	LogFall	LogRise	Common
	Sqrt	Root3	X^2	Х^З	
	Sinc	Gussian	Dlorentz	Haversine	Math
	Lorentz	Gauspuls	Gmonpuls	Tripuls	
I	CH1 Waveform		Loa	d: Hi–Z	Project
	Freque	ncy	1.00000)0kHz 👘	Winfun\
	Ampl 4	0000	Phase	0_0°	Triangle
	1.	oooohh		0.0	
	Offset)	.OmVdc			Select

Tabela 10 - Notas Explicativas para Forma de Onda Arbitrária Matemática

Função	Nota Explicativa
ExpFall	Seleciona a forma de onda de queda exponencial.
ExpRise	Seleciona a forma de onda de aumento exponencial.
LogFall	Seleciona a forma de onda de queda logarítmica.
LogRise	Seleciona a forma de onda de aumento logarítmico.
Sqrt	Seleciona a forma de onda de raiz quadrada.
Root3	Seleciona a forma de onda de raiz cúbica.
X^2	Seleciona a forma de onda elevada ao quadrado.
X^3	Seleciona a forma de onda elevada ao cubo.
Sinc	Seleciona o seno da forma de onda.
Gaussian	Seleciona a forma de onda gaussiana.
Dlorentz	Seleciona a forma de onda de D-Lorentz.
Haversin	Seleciona a forma de onda de haversine.
Lorentz	Seleciona a forma de onda de Lorentz.
(Gauspuls)	Seleciona a forma de onda de pulso senoidal modulado
	gaussiano.
Gmonpuls	Seleciona a forma de onda de monopulso gaussiano.
Tripuls	Seleciona a forma de onda de pulso triangular.

Menu Project

Sine	CH2	Arb	CH1	Arb
Cardiac	Quake	Chirp	TwoTone	Common
				Math
CH1 Waveform		Load: Hi-Z		Project
Frequency		1.000 0 Phase	00kHz	Winfun\ Triangle
Offset)	.OmVdc	, medo	0.0	Select

Figura 3.24

Tabela 11 - Notas Explicativas para Projeto de Forma de Onda Arbitrária

Função	Nota Explicativa
Cardiac	Seleciona forma de onda de sinal de eletrocardiograma (ECG).
Quake	Seleciona a forma de onda de abalo sísmico Loma Prieta.
Chirp	Seleciona a forma de onda de varredura por frequência de cosseno.
TwoTone	Seleciona a forma de onda com sinal de dois tons.
SNR	Seleciona a forma de onda senoidal com ruído branco.

Menu Janela/Forma de Onda Triangular

	Sine	CH2	Arb	CH1	Arb
	Hamming	Hanning	Kaiser	Blackman	Common
	GaussWin	Triang	Harris	Bartlett	
	Tan	Cot	Sec	Csc	Math
	Asin	Acos	Atan	ACot	<u> </u>
CH1 Waveform			Loa	d: Hi–Z	Project
		1 000 0	ሰስኔዝት		
	Frequency		1.000 0	VVMIZ	Winfun\
Amp1 4 0001mm		Phase	0_0°	Triangle	
l	1.	oooohh		V.V	
	Offset <mark>)</mark>	.OmVdc			Select

Figura 3.25

Tabela 12 - Notas Explicativas para Forma de Onda Triangular/Função Janela

Função	Nota Explicativa
Hamming	Seleciona a forma de onda janela hamming.
Hanning	Seleciona a forma de onda janela hanning.
Kaiser	Seleciona a forma de onda janela kaiser.
Blackman	Seleciona a forma de onda janela blackman.
Gaussian	Seleciona a forma de onda janela Gaussian.
Triangle	Seleciona a forma de onda janela triangular.
Hairs	Seleciona a forma de onda janela hairs.
Bartlett	Seleciona a forma de onda janela bartlett.
Tan	Seleciona a tangente da forma de onda.
Cot	Seleciona a cotangente da forma de onda.
Sec	Seleciona a secante da forma de onda.

Csc	Seleciona a cossecante da forma de onda.
Asin	Seleciona o inverso de seno da forma de onda.
Acos	Seleciona o inverso de cosseno da forma de onda.
Atan	Seleciona o inverso da tangente da forma de onda.
Acot	Seleciona o inverso da cotangente da forma de onda.

Selecionar a Forma de Onda Armazenada

Como mostra a Figura 3.18, use as teclas direcionais ou a chave rotativa para escolher a forma de onda arbitrária correspondente e pressione Select.

Sine	CHIZ	firb	CH1	Arb
WAVE1	WAVE2			Stored Wforms
CH1 Nauc	fron	Loa	d: Hi-Z	
Freque	ncy AAAHaaa	1.000 00 Lebase	0kHz 0.0°	Cancel
-1- () toc110	.000Vdc		0.0	Select

Figura 3.26

G. Gerar Formas de Onda Moduladas

Use o botão **Mod** para gerar formas de onda moduladas. Este instrumento é capaz de gerar formas de onda moduladas AM, FM, ASK, FSK, PM, PWM e DSB-AM. Os parâmetros de modulação podem variar de acordo com o tipo de sinal modulado. Em AM, o usuário pode configurar a fonte (interna/ externa), profundidade, frequência de modulação, forma de onda modulada e forma de onda portadora; em FM, o usuário pode configurar a fonte (interna/externa), frequência de modulação, desvio de frequência, forma de onda modulada e forma de onda portadora; em ASK, o usuário pode configurar a fonte (interna/externa), a frequência-chave e a forma de onda portadora; em FSK, o usuário pode configurar a fonte (interna/externa), frequência de salto e forma de onda portadora; em PM, o usuário pode configurar a fonte (interna/externa), desvio de fase, frequência de modulação, forma de onda portadora;

As instruções detalhadas de como configurar esses parâmetros de acordo com o tipo de modulação seguem logo abaixo.

Figura 3.27

1. AM

Uma forma de onda modulada consiste em duas partes: a forma de onda portadora e a forma de onda modulada. Em AM, a amplitude da forma de onda portadora varia com a tensão instantânea da forma de onda modulada.

Pressione Mod - Type - AM para entrar no seguinte menu.

	Função	Configurações	Nota Explicativa
	AM Freq		Configura a frequência da forma de onda modulada. Faixa de frequência: 2mHz ~ 20kHz (apenas fonte interna).
nua	AM Depth		Configura a faixa de amplitude.
AM Freq	Туре	AM	Modulação de amplitude.
AM Depth Type AM Shape Sine	Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Escolhe a forma de onda modulada. Para alterar o parâ- metro de forma de onda portadora, pressione Sine, Squa- re, Ramp ou Arb.
Source		Internal	A fonte é interna.
Internal	Source	External	A fonte é externa. Use o conector (Modulation In) no pai- nel traseiro.

Tabela 13 - Notas Explicativas para os Parâmetros AM

Figura 3.28

2. FM

Uma forma de onda modulada consiste em duas partes: a forma de onda portadora e a forma de onda modulada. Em FM, a frequência da forma de onda portadora varia com a tensão instantânea da forma de onda modulada. Os parâmetros para FM são exibidos na Figura 3.29.

Sime CH2	Sine CH1	Mod
Туре н	<mark>- 1</mark> 00.000Hz — — — — — — — — — — — — — — — — — — —	FM Freq
Type FM Shape Sine	VVAALUUA	FM Dev
Source Internal		Туре
FM Mod	Load: Hi-Z	FM
FM Freq	100 0004-	Shape
Infied		Sine
Ener 4 0001.0-	Amp 1 / 0000	Source
Tred L'ONNKHZ	4.000vpp	Internal

Figura 3.29

Pressione $Mod \rightarrow Type \rightarrow FM$, para entrar no seguinte menu.

	Função	Configurações	Nota Explicativa
	FM Freq		Configura a frequência da forma de onda modulada. Fai- xa de frequência: 2mHz ~ 20kHz (fonte interna).
Hod	FM Dev		Configura o máximo desvio de frequência.
	Туре	FM	Modulação de frequência.
FM Freq FM Dev Type FM Shape	Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Escolhe a forma de onda modulada. Para alterar o parâ- metro de forma de onda portadora, pressione Sine, Squa- re, Ramp ou Arb.
Sine		Internal	A fonte é interna.
Source Internal	Source	External	A fonte é externa. Use o conector (Modulation In) no pai- nel traseiro.

Tabela 14 - Notas Explicativas para os Parâmetros FM

Figura 3.30

3. ASK

ASK é uma forma de modulação que representa dados digitais como variações na amplitude da onda portadora. A amplitude de um sinal portador analógico varia de acordo com o fluxo de bits (sinal modulado), mantendo a frequência e a fase constantes. Os parâmetros para ASK são demonstrados na Figura 3.31.

Figura 3.31

Pressione $(Mod) \rightarrow Type \rightarrow ASK$ para entrar no seguinte menu.

Hod
Key Freq
Type ASK
Source
Internal

Tabela 15 - Notas Explicativas para os Parâmetros ASK

4	Função	Configurações	Nota Explicativa
q	Key Freq		Configura a frequência com que a saída de ampli- tude alterna entre a amplitude da portadora e zero (apenas modulação interna).
-	Туре	ASK	Altera a amplitude de modulação.
	Source	Internal	A fonte é interna.
		External	A fonte é externa. Use o conector (ExtTrig/Gate/ FSK/Burst) no painel traseiro.

Figura 3.32

4. FSK

A Modulação FSK é um método de modulação onde a frequência de saída é alternada entre duas frequências pré-configuradas (frequência da forma de onda portadora e frequência de salto). A frequência que a saída de frequência alterna é chamada de frequência-chave.

Sine CH2	Sine CH1	Mod
Type K		Key Freq
Type FSK	<u>VV</u>	
Source Internal 200	.000kHz	Туре
FSK Mod	Load: Hi-Z	FSK
Hop Freq	200.000kHz	Hop Freq
	Amp 1 / 000Umm	Source
Trea 1.000kmZ	4.000vpp	Internal

Pressione $(Mod) \rightarrow Type \rightarrow FSK$, para entrar na seguinte interface.

Mod
Key Freq
Түрө
FSK
Hop Freq
Source
Internal

Tabela 16 - Notas	Explicativas para	os Parâmetros FSK
	Explication para	

	Função	Configurações	Nota Explicativa
Freq.	Key Freq		Configura a frequência com que a saída de frequ- ência alterna entre a frequência da portadora e a frequência de salto (apenas modulação interna).
10	Туре	FSK	Altera a frequência de modulação.
iK.	Hop Freq		Configura a frequência de salto.
	Source	Internal	A fonte é interna.
reg		External	A fonte é externa. Use o conector (ExtTrig/Gate/ FSK/Burst) no painel traseiro.
	K.		·

5. PM

Uma forma de onda modulada consiste em duas partes: a forma de onda portadora e a forma de onda modulada. Em PM, a fase da forma de onda portadora varia com o nível de tensão instantânea da forma de onda modulada. Os parâmetros para PM são demonstrados na Figura 3.35.

Figura 3.35

Pressione $(Mod) \rightarrow Type \rightarrow PM$ para entrar na seguinte interface.

	Tabela 17 - Notas Explicativas para os Parâmetros de PM				
	Função	Configurações	Nota Explicativa		
	PM Freq		Configura a frequência da forma de onda modula- da. Faixa de frequência: 2mHz ~ 20kHz.		
lod	Phase Dev		Faixa de 0° ~ 360°.		
Freq	Туре	PM	Modulação de fase.		
se Dev Vpe PM Napc Sine	Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Escolhe a forma de onda modulada. Para alterar o parâmetro de forma de onda portadora, pressione Sine, Square, Ramp ou Arb.		
aurce ternal	Source	Internal External	A fonte é interna. A fonte é externa. Use o conector (ExtTrig/Gate/ FSK/Burst) no painel traseiro.		

6. PWM

Uma forma de onda modulada consiste em duas partes: a forma de onda portadora e a forma de onda modulada, sendo a forma de onda portadora apenas pulso. Em PWM, a largura de pulso varia com a tensão instantânea da forma de onda modulada. Os parâmetros para PWM são demonstrados na Figura 3.37.

Figura 3.37

Pressione $Mod \rightarrow Pulse \rightarrow PWM$ para entrar no seguinte menu.

|--|

	Função	Configurações	Nota Explicativa
	PWM Freq		Configura a frequência da forma de onda modula- da. Faixa de frequência: 2mHz ~ 20kHz (apenas fonte interna).
Mod	Width Dev		Configura a faixa de largura.
·图本版五十	Duty Dev		Configura a faixa de duty.
种和国际学	Туре	PWM	Modulação de amplitude.
宽度偏差 调制类型 PWM 调制波形 Sine	Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Escolhe a forma de onda modulada. A forma de onda portadora é apenas pulso.
信初期左押	Source	Internal	A fonte é interna.
的問題		External	A fonte é externa. Use o conector (Modulation In) no painel traseiro.

7. DSB-AM

Pressione Mod→ Type →DSB-AM. Os parâmetros para DSB-AM são demonstrados na Figura 56.

Figura 3.39

Tabela 19 - Notas Explicativas para os Parâmetros DSB-AM

	Função	Configurações	Nota Explicativa
Mod	DSB Freq		Configura a frequência da forma de onda modula- da. Faixa de frequência: 2mHz ~ 20kHz (apenas fonte interna).
调使标文	Туре	DSB-AM	Modulação de amplitude.
调制类型 D58-AM 调制波形 Sine	Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Escolhe a forma de onda modulada. Para alterar o parâmetro de forma de onda portadora, pres- sione Sine, Square, Ramp ou Arb.
信源洗探	Source	Internal	A fonte é interna.
内部		External	A fonte é externa. Use o conector (Modulation In) no painel traseiro).

Figura 3.40

H. Gerar Varredura

No modo de frequência de varredura, o instrumento escaneia do início da frequência até o fim, no tempo de varredura especificado pelo usuário. A varredura pode ser gerada em formas de onda senoidais, quadradas, de rampa ou arbitrárias (em formas de onda de pulso, ruído e DC não é permitido).

Sine CH2	Sine CH1	Sweep
Sweep Time K	<mark>1.000s — н</mark>	SwpTime
1.500kHz 7 ()	<u>AAAAMMAA</u>	StopFreq
Source Internal		FrqSpan
Source internal		StartFreq
Sine Sweep	Load: Hi-Z	MidFreq
Sueen Time	1 000s	Source
owcep Thie	1,000	Internal
Ener 4 000111	Amo 1 4 0000	1/2
Treq 1.000KHZ	4.000vpp	÷

Figura 3.41

Pressione o botão Sweep para entrar no seguinte menu. Configure os parâmetros de forma de onda usando o menu operacional.

Sueen	Tabela 20 - N	otas Explicativas	s de Forma de Onda de Varredura (Página 1/2)
oweep	Função	Configurações	Nota Explicativa
Swp Time	Swp Time		Configura o curto tempo de varredura em que a frequên- cia muda do início da frequência o fim.
Stop Freq FrqSpan	Stop Freq Freq Span		Configura o fim da frequência da varredura. Configura o tempo de frequência da varredura.
StartFreq MidFreq	Start Freq Mid Freq		Configura o início da frequência de varredura. Configura o meio da frequência de varredura.
Source		Internal	Escolhe fonte interna.
Internal 1/2	Source	External	Escolhe fonte externa. Use o conector (ExtTrig/Gate/ FSK/Burst) no painel traseiro.
+		Manual	Configura o tempo inicial e final manualmente.

Figura 3.42

1. Configuração da Frequência de Varredura

Use frequência inicial e frequência final ou a frequência central e tempo curto de frequência para configurar a faixa de frequência. Pressione o botão novamente para alternar as funções entre si.

Succep	Tabela 21 - Notas Explicativas de Forma de Onda de Varredura (Página 2/2)				
2/2	Função	Configurações	Nota Explicativa		
1	Trig Out	Open	Configura o sinal de trigger e a borda de subida;		
Trig Out		Off	Desabilita a configuração de trigger.		
Off	Linear/Log		Configura a varredura com espaçamento linear;		
Lincar			Configura a varredura com espaçamento logarítmi-		
Log			со.		
Direct	Direct	\uparrow	Varredura para cima;		
1		\downarrow	Varredura para baixo.		

I. Gerar Burst

A função Burst pode gerar formas de onda versáteis em burst, que pode durar períodos específicos do ciclo da forma de onda (N-Cycle burst) ou quando sinais externos são aplicados. Qualquer forma de onda pode ser usada, exceto forma de onda de ruído, onde pode ser usado apenas em Gated Burst. Pressione o botão Burst para entrar na seguinte interface. Configure os parâmetros da forma de onda usando o menu operacional.

Sine C	HZ Si	ne CH1	Sweep
Sweep Time 1.500kHz + 500.000Hz + Sources Internet	2/2 ↑ Trig Out Off		
Source Intern	al		Linear
Sine Sweep	L	.oad:Hi-Z	Log
Sweep Time	• 1 .000	2	Direction
		-	1
Freq 1 000b	H ₇₇ Amn 1	4 000Um	

Figura 3.44

1. Configurando N-Cycle Burst

Pressione [Burst]→ N Cycle para entrar na seguinte interface.

	Tabela 22 - Notas	Explicativas dos Pal	ametros de N-Cycle (Payina 1/2)
Burst	Função	Configurações	Nota Explicativa
	Period		Configura o burst do período.
Period	Start Phase		Configura a fase inicial de burst.
Stautheren	NCycle		Usa o modo N-Cycle.
StarPhase	Gated		Usa o modo Gated.
NCyde		Internal	Escolhe fonte interna.
Gated	Source	External	Escolhe fonte externa. Use o conector (Ext-
Source			Trig/Gate/FSK/Burst) no painel traseiro.
Internal		Manual	Escolhe fonte externa. Configura o tempo ini-
1/2			

Tabela 22 - Notas Explicativas dos Parâmetros de N-Cycle (Página 1/2)

Figura 3.45

2. Período de Burst

Configura o período de tempo entre um N-Cycle e o próximo. Se necessário, o período será aumentado para permitir um número específico de ciclos em um burst. Período de Burst > Período da Portadora x Número de Burst.

3. Fase Inicial

Define o ponto de partida na forma de onda. A fase varia de 0° a 360° e a configuração padrão é 0°. Para um forma de onda arbitrária, 0° é o ponto da primeira forma de onda.

4. N-Cycle/Gated

N-Cycle é um número específico de ciclos da forma de onda e cada burst é ativado por um evento de trigger. O burst gated usa uma fonte externa para controlar o burst, como quando ser ativado.

Tabela 23	abela 23 - Notas Explicativas para os Parametros de N-Cycle (Pagina 2/2)		
Função	Configurações	Nota Explicativa	
Trig Out	<u>-</u>	Sinal disparado em borda de subida.	
	₹.	Sinal disparado em borda de descida.	
	Off	Configuração de trigger desabilitada.	
Cycles/		Configura o número de bursts em um N-Cycle.	
Infinite		Configura o número de bursts em um N-Cycle para infinito.	
Delay		Configura o tempo de atraso antes do burst ser iniciado.	

Figura 3.46

5. Ciclos

Configura o número de ciclos da forma de onda em um N-Cycle (1 ~ 50.000 ou Infinito). Quando a opção "Infinite" é habilitada para esta função, uma forma de onda contínua é gerada, sendo interrompida apenas quando um evento de trigger acontecer.

Nota

- Se necessário, o período de burst aumentará para proporcionar o número específico de ciclos.
- Para um ciclo infinito de burst, será necessário um trigger externo ou manual pra ativar o burst.

6. Delay

Configura o tempo de atraso entre a entra do trigger e o início do N-Cycle burst. O delay máximo é de 240ns.

Nota Explicativa

Configura a polaridade para o sinal Gated.

Configura o modo N-Cycle;

Configura o modo Gated.

7. Configurar o Gated Burst

Pressione (Burst)-Gated para entrar na seguinte interface.

Função

NCycle

Gated

Polarity

Burst	
_	
StarPhase	
NCyde	
Gated	
Polarity	
Negative	

Tabela 24 - Notas Explicativas para os Parâmetros de Gated Burst

Configurações

Positive

Negative

J. Armazenar e Visualizar

Pressione o botão Store/Recall para entrar na seguinte interface. O usuário pode salvar ou visualizar os dados salvos no instrumento. Um arquivo em U Disk também pode ser visto ou deletado. Os nomes dos arquivos devem estar em Inglês. O usuário pode apenas visualizar ou deletar um dado salvo por CSV de Osciloscópios.

Função	Configurações	Nota Explicativa
File Type	State Data	A configuração do instrumento; Arquivo de forma de onda arbitrária.
Browser	Directory File	Alterna entre o diretório e o arquivo.
Save		Salva a forma de onda em um local determinado.
Recall		Visualiza a forma de onda ou as informações de con figuração em uma posição específica da memória.
Delete		Deleta o arquivo selecionado.

Figura 3.49

1. Sobre o navegador

A mudança da seleção do diretório é feita pelas teclas direcionais. No modo diretório, pressione a tecla da direita para abrir o diretório inferior, enquanto a tecla da esquerda dobra o diretório. As teclas para cima e para baixo são usadas para navegar pelos diretórios.

2. Salvar um Dado no Instrumento

O usuário pode salvar um dado em qualquer uma das dez memórias não-voláteis do instrumento. O dado armazenado irá "memorizar" a função selecionada (incluindo forma de onda arbitrária, frequência, amplitude, compensação DC, duty cycle, simetria e outros parâmetros de modulação usados). Para salvar um dado no instrumento, siga o procedimento a seguir:

1. Escolha o tipo de arquivo para armazenar.

Pressione Store/Recall - Type - State e escolha o tipo de armazenamento.

2. Escolha a localização do arquivo.

Existem dez posições em Local (C:). Escolha qualquer uma delas girando a chave rotativa.

3. Dê um nome ao arquivo e salve-o.

Pressione o botão Save, digite o nome desejado e pressione Save para finalizar.

3. Usando o Armazenamento USB

Como mostra a Figura 3.50, o local de armazenamento é divido em: armazenamento interno local (C:) e armazenamento U Disk Dispositivo USB (A:). A interface USB está localizada do lado esquerdo do painel frontal. Quando um dispositivo de armazenamento USB for conectado, o menu de armazenamento exibirá "USB Device (A:)". Caso contrário, a localização padrão é a localização interna Local (C:).

Figura 3.50

1. Instale o dispositivo USB.

Insira o dispositivo USB na interface USB no painel frontal. A tela exibirá "USB flash device plug in" e o menu de armazenamento exibirá "USB Device (A:)".

2. Escolha o dispositivo USB.

Pressione **Browser**->**Directory**, mova o cursor com as teclas direcionais para cima e para baixo para selecionar "USB Device (A:)". Pressione a tecla da direita para abrir o diretório inferior e use as teclas direcionais para cima e para baixo para selecionar o arquivo "SDG1000". Use a tecla da direita para abrir o diretório inferior e as teclas para cima e para baixo para selecionar o arquivo "Workspace". Digite o nome do arquivo e salve.

3. Remova o dispositivo USB.

Remova o dispositivo USB da interface. O sistema informará "USB flash device plug out" e o "USB Device (A:)" no menu de armazenamento desaparecerá.

Nota

• O dispositivo USB usado deve ser somente U Disk; o instrumento não suporta HDs portáteis.

4. Salvar um Arquivo

Pressione Store/Recall Store para entrar na seguinte interface. Digite o nome desejado para o arquivo no quadro "File Name". No meio da figura abaixo há um teclado inserido, usado para editar o nome do arquivo. Use as teclas direcionais para cima e para baixo e a chave rotativa para selecionar o caracter desejado; use as teclas direcionais para a esquerda e para a direita para editar o nome do arquivo inserido.

Figura 3.51

Tabela 26 - Notas Explicativas para Armazenamento de Arquivos

Função	Configurações	Nota Explicativa
Input Type	En	Insere o nome desejado (em inglês).
Select		Seleciona o caracter atual.
Delete		Deleta o caracter atual.
Save		Armazena o arquivo com o nome atual.

Figura 3.52

1. Entrada para edição (em Inglês)

A entrada para edição é exibida na Figura 3.53. Para salvar um arquivo nomeado de "NEWFILE", siga os passos abaixo:

Figura 3.53

- 1. Pressione InType->En para entrar na interface.
- 2. Insira o nome "NEWFILE".

Use a chave rotativa para ajustar a posição do cursor horizontal e as teclas para cima e para baixo para ajustar a posição vertical. Selecione o caracter "N" e pressione "Select". Repita este procedimento até completar "NEWFILE".

3. Edite o nome do arquivo.

Quando algo estiver errado no nome do arquivo, mova o cursor ao caracter a ser editado e pressione Delete para removê-lo. Em seguida, insira o caracter correto.

4. Pressione Save para finalizar e salvar o arquivo.

K. Configurar a Função Utility

Com a função Utility é possível configurar parâmetros no instrumento como: DC On/Off, Sync On/Off, parâmetro de saída, parâmetro de interface, configurações do sistema e parâmetro de teste. A chave DC oferece as opções de saída DC ou saída de forma de onda arbitrária. A chave Sync oferece a opção de escolher um sinal síncrono ou não. A configuração de saída fornece parâmetros de configuração para Load/HighZ e Normal/Inverse. As configurações do sistema fornecem opções para idioma, display, alarme sonoro, protetor de tela, formato, sistema de alimentação e configurações padrão. O parâmetro de teste fornece funções de auto-teste e calibração.

Pressione o botão Utility para entrar no menu Utility. Essas funções são listadas abaixo pela Figura 3.54.

Tabela 27 - Notas Explicativas para Configuração do Sistema Utility (Página 1/2)

Função	Configurações	Nota Explicativa
DC	On	Configura a saída da forma de onda para ser DC.
	Off	Configura a saída da forma de onda para ser arbitrária.
IO Setup	USB Setup	Configura a função USB.
	GPIB	Configura o endereço GPIB.
Output Setup		Configura os parâmetros de saída.
Count		Contador de frequência.

Figura 3.54

Tabela 28 - Notas Explicativas para Configuração do Sistema Utility (Página 2/2)

Função	Configurações	Nota Explicativa
System		Modifica as configurações do sistema.
Test/Cal		Testa e calibra o instrumento.
EditInfo		Informação do sistema.
Update		Função de atualização.

1. Configurar a Saída DC

Pressione Utility DC DC on para entrar na seguinte interface. Note que há um símbolo de "DC On" no meio esquerdo da tela.

Sine CH2 DC CH1	DC
Otherst	DC
-	On
3.000Vdc *	10
DC <mark>On</mark>	-1V
	20
Direct Current Un Load: Hi-2	_2Ų
1	50
DC Offset 8.000Udc	-5V

Figura 3.56

2. Compensação DC

Configura o nível de tensão DC.

3. Mudar para Saída de Forma de Onda Arbitrária

- 1. Pressione Utility →DC→DC off para interromper a saída DC e retornar à saída de forma de onda arbitrária.
- 2. Pressione qualquer botão funcional e a configuração da saída de forma de onda retorna à saída de forma de onda arbitrária. A saída DC é desligada automaticamente.

4. Configurar I/O

Pressione Utility -- IO Setup para configurar a interface I/O. O instrumento fica aguardando por um protocolo RAW e protocolo TMC. O usuário pode modificar a configuração do instrumento para uma correspondente ao protocolo usado pelo IO Setup.

5. Configurar Parâmetros de Saída

Pressione Utility - Output Setup para entrar na seguinte interface.

Util Tabela 29 - Notas Explicativas para Configuração de Saída (Página 1/2) Load Função Configurações Nota Explicativa HighZ Load Configura a carga conectada ao conector de saída; Normal Configura a carga conectada à saída. HighZ Invert Normal Saída normal: Sync. Invert Saída inversa. Off Saída síncrona ativada: Sync On Off Saída síncrona desativada. ChCapy ChCopy Copia um canal para o outro. Done Finaliza a operação. Done.

Configurar a Carga de Saída

O instrumento possui uma impedância de 50Ω integrada no conector Output, localizado no painel frontal. Se a carga real não corresponde à carga configurada, a amplitude e a compensação exibidas serão incorretas. Esta função é usada para que a tensão exibida corresponda à tensão esperada.

Passos para configuração da carga:

Pressione $Utility \rightarrow Output Setup \rightarrow Load$ para entrar na seguinte interface.

Note que o parâmetro de carga exibido no canto inferior direito é a configuração padrão quando o instrumento é ligado ou o valor de carga pré-configurado. Se o valor atual é válido para a saída, então o valor atual será usado.

Figura 3.58

Configurar Forma de Onda Invertida

Pressione Utility →Output Setup → Invert para configurar a saída de forma de onda invertida. Quando a forma de onda é invertida, a compensação não muda.

Configurar a Saída de Sincronização

O instrumento fornece uma saída síncrona através do conector Sync localizado no painel traseiro. Todas as funções padrão de saída (exceto DC e Ruído) tem um sinal síncrono correspondente. Para algumas aplicações, esse sinal pode ser desabilitado se o usuário não quiser usá-lo.

Nota

- Na configuração padrão, o sinal síncrono deve ser conectado ao conector Sync ativado. Quando o sinal síncrono é desabilitado, a tensão de saída do conector Sync fica em nível baixo.
- No modo invertido, a forma de onda que corresponde ao sinal síncrono não é invertida.
- O sinal síncrono é um sinal de pulso com largura de pulso positiva fixa maior que 50ns.
- Para formas de onda não-moduladas, o sinal síncrono de referência é a portadora.
- Para modulação interna AM, FM e PM, o sinal síncrono de referência é o sinal modulado (não o sinal da portadora).
- Para ASK e FSK, o sinal síncrono de referência é o chaveamento por frequência.
- Quando uma varredura é iniciada, o sinal síncrono torna-se nível TTL alto. A frequência do sinal síncrono é igual ao tempo específico de varredura.
- Quando o burst é iniciado, o sinal síncrono fica em nível alto.
- Para burst gated externo, o sinal síncrono segue o sinal gated externo.

6. Medida de Frequência

O MFG-4225 possui um contador de frequência que pode medir uma faixa de frequência de 100mHz a 200MHz. Pressione Utility ----Count para entrar na seguinte interface.

Util	il Jabela 30 - Notas Explicativas para Contador de Frequencia		
Erea	Função	Nota Explicativa	
Perind	Freq	Mede frequência.	
DWGRE	Period	Mede período.	
NWidth	PWidth	Mede largura de pulso positiva.	
	NVVidth	Mede largura de pulso negativa.	
Duty	Duty	Mede duty cycle.	
RefeEren	RefeFreq	Configura a frequência de referência.	
Tridley	TrigLev	Configura a tensão do nível de disparo.	
mgtev	Setup	Modifica a configuração do contador.	
Salara			

Talas I.a ~~

Figura 3.59

.

/ode	Função	Configurações	Nota Explicativa
AC	Mode	DC	Configura o modo de acoplamento para DC;
HER.		AC	Configura o modo de acoplamento para AC.
OFF	HFR	On	Habilita o filtro de rejeição de alta frequência.
		Off	Desabilita o filtro de rejeição de alta frequência.
efault	Default		Restabelece as configurações padrão do contador.

Dane

Figura 3.60

.

7. Configurar o Sistema

Pressione Utility → System para entrar na seguinte interface.

Util	Tabela 32 - Notas	Tabela 32 - Notas Explicativas de Configuração do Sistema (Página 1/2)				
Number	Função	Configurações	Nota Explicativa			
Formet	Number format		Configura o formato do valor.			
Language	Language		Configura o idioma exibido.			
English BowerOn	Power On	Default	Todas as configurações retornarão para o padrão de fábrica guando o instrumento for ligado;			
Default		Last	Todas as configurações retornarão para as últimas configuradas quando o instrumento for ligado.			
Default	Set to Default		Restabelece as configurações padrão.			

	Função	Configurações	Nota Explicativa
Uti1	Веер	On	Aciona o alarme sonoro;
Ť		Off	Desabilita o alarme sonoro.
2/2	ScmSvr	1min	Ativa o protetor de tela. O protetor de tela ligará se
Beep		5min	nenhuma ação for efetuada durante o tempo sele-
On		15min	cionado.
ScmSvr		30min	Pressione qualquer botão para retomar a operação.
15min		1hour	
CIKSDURGE		2hour	
Internal		5hour	
CINCERTICE		Off	Desativa o protetor de tela.
Done	CIKSource	Internal	Escolhe a fonte do sistema de clock.
		External	

Tabela 33 - Notas Explicativas para Configuração do Sistema (Página 2/2)

Figura 3.62

L. Pontos Importantes

1. Alimentação

Escolha uma configuração quando o instrumento for ligado. Duas opções estão disponíveis: a configuração padrão e a última configuração usada. Uma vez selecionada, a configuração será usada quando instrumento for ligado.

2. Alarme Sonoro

Ative ou desative o som de quando um erro ocorre no painel frontal ou na interface remota. Ative ou desative qualquer som feito por um botão ou pela chave rotativa no painel frontal. A configuração atual é armazenada na memória não-volátil.

Configurar Formato

Pressione Utility - System - Number Format para entrar na seguinte interface.

Figura 3.63

Util	
Point	
Separator	
Space	
Done	

Tabela 34 - Notas Explicativas para Configuração do Formato do Valor

	Função	Configurações	Nota Explicativa
	Point	•	Usa ponto para representar ponto;
		,	Usa vírgula para representar ponto.
ar i	Separator	On	Separador habilitado;
		Off	Separador desabilitado;
		Space	Usa o espaço para separar.

Figura 3.64

De acordo com as diferentes opções de ponto e separação, o formato pode obter diversas formas.

1. "•" como ponto, pressione Separator->On, e o valor aparecerá da seguinte forma:

Frequency	1.000,000kHz
-----------	--------------

Figura 3.65

2. "**7**" como ponto, pressione Separator->On. e o valor aparecerá da seguinte forma:

Frequency	1,000.000kHz
Figu	ıra 3 66

3. "•" como ponto, pressione Separator->Off e o valor aparecerá da seguinte forma:

Prequency 1.000000kHZ

Figura 3.67

4. "7" como ponto, pressione Separator->Off e o valor aparecerá da seguinte forma:

Prequency 1,000000kHz

Figura 3.68

5. "•" como ponto, pressione Separator->Space e o valor aparecerá da seguinte forma:

Figura 3.69

6. "7" como ponto, pressione Separator->Space e o valor aparecerá da seguinte forma:

Prequency 1,000 000kHz

Configuração de Idioma

Este instrumento oferece dois idiomas: Inglês e Chinês Simplificado.

Para selecionar o idioma, pression Utility e então Language. O procedimento é o seguinte: pressione Utility →System→ Language para alterar o idioma.

Retornar à Configuração Padrão

Pressione Utility -System - Set to Default para restabelecer as configurações padrão. As configurações padrão do instrumento são as seguintes:

Tabela 35 - Padrão de Fábrica das Configurações

Saída	Padrão
Função	Forma de onda senoidal
Frequência	1kHz
Amplitude/Compensação	4Vpp/0Vdc
Fase	0°
Terminais	High Z
Modulação	Padrão
Portadora	Forma de onda senoidal 1kHz
Modulada	Forma de onda senoidal 100Hz
Profundidade AM	100%
Desvio FM	500Hz
Frequência-Chave	100Hz
Frequência-Chave	100Hz
Frequência de Salto FSK	1MHz
Desvio de Fase	180°
Varredura	Padrão
Frequência Inicial/Final	100Hz/1,9kHz
Tempo de Varredura	1s
Trig Out	Off
Modo	Linear
Direção	\uparrow
Burst	Padrão
Período	10ms
Fase	0°
Contador	1ciclo
Trig	Off
Disparo	Padrão
Fonte	Interna

M. Teste e Calibração

Pressione Utility - Test/Cal para entrar no menu a seguir.

Sime CH2	Sine CH1	Util
Frequency +	<u>1</u> .000 000kHz —→	Number Format
0.0mVdc		Language English
		PowerOn
CH1 Waveform	Load∶50Ω	Default
Frequency	1.000 000kHz	Set to
Ampl 4 AAAUnn	Phase 🎧 🌔	Default
- 110000pp	VIV	1/2
Offset().()mVdc		¥

Figura 3.71

Tabela 36 - Notas Explicativas para Configuração de Teste

Função	Nota Explicativa	
SelfTest	Realiza o auto-teste do sistema.	
SelfCal	Realiza a auto-calibração do instrumento.	

Nota Explicativa

Executa o teste de tela.

Executa o teste LED.

Executa o teste de teclado.

Figura 3.72

1. Auto-Teste

Pressione Utility -- Test/Cal -- SelfTest para entrar no menu a seguir.

Função

Scr Test

Key Test

LED Test

Stine SorTest KeyTest LEDTest Cancel

 Tabela 37 - Notas Explicativas para Auto-Teste

Teste de Tela

Selecione Scr Test para entrar na interface de teste de tela. As frases "Press '7' key to continue," e "Press '8' key to exit." serão exibidas. O usuário deve pressionar "7" para realizar o teste.

Figura 3.74

Teste de Teclado

Selecione "keyboard Test" para entrar na interface de teste do teclado. Os retângulos na tela representam as teclas no painel frontal. As formas com duas setas nas laterais representam as chaves rotativas no painel frontal. Teste todas as teclas e chaves rotativas. Verifique também se a iluminação de fundo de todas as teclas estão funcionando corretamente.

Nota

- Quando operar, a tela deverá estar branca (cor do display).
- O botão testada ou a área correspondente às chaves rotativas testadas devem ser exibidos em verde (cor do display).
- No fundo da tela aparecerá a informação "Press '8' key three times to exit.". Essa mensagem significa que, pressionando "8" três vezes, o usuário sai do teste.

Figura 3.75

Teste de LED

Selecione "LED Test" pata entrar na interface iluminada. Os retângulos na tela representam as teclas no painel frontal. As formas com duas setas nas laterais representam as chaves rotativas no painel frontal. As frases "Press '7' key to continue," e "Press '8' key to exit." serão exibidas. O usuário deve pressionar o botão "7" continuamente para realizar o teste. Quando os botões estiverem iluminados, a área correspondente na tela deverá estar em verde (cor do display).

Figura 3.76

2. Auto-Calibração

Pressione Utility $\rightarrow 1/2 \rightarrow \text{Test/Cal} \rightarrow \text{SelfCal}$ para entrar na auto-calibração, como mostra a Figura 3.77. Auto-calibração: realiza a auto-calibração. Se o ambiente onde o instrumento é operado muda, o sistema pode calibrar os dados baseando-se na mudança do ambiente.

Sine	CH2	Sine	CH1	Util
Press ar	w function l	key to continu	⊫ 100%	SelfTest
				SelfAdjust
SelfAd jus	st		d: Hi-Z	
Frequen	cy	1.000,00	IUKHZ	
Amp1 4.0	00Vpp	Phase ().0°	
Offset(),	OmVdc			Cancel

Figura 3.77

N. Atualização de Firmware

Para maiores informações sobre como realizar a atualização do firmware do seu instrumento, entre em contato com a Minipa.

O. Como usar o Sistema de Ajuda

O usuário pode obter uma ajuda particular para cada botão do painel frontal por meio do sistema de ajuda embutido ou também pode obter ajuda sobre a operação dos botões do painel frontal com a lista de ajuda.

Pressione Help para entrar na seguinte interface.

Tabela 38 - Notas Explicativas para o menu de Ajuda

Função	Nota Explicativa
↑	Cursor de seleção acima.
\downarrow	Cursor de seleção abaixo.
Choice	Seleciona para ler a informação.

Figura 3.79

9) APLICAÇÃO E EXEMPLOS

Para auxiliar o usuário em como operar seu gerador de função e forma de onda arbitrária com maior eficiência, foram criados alguns exemplos com descrição detalhada. Todos os exemplos abaixo usam as configurações padrão, exceto explicações especiais.

Este capítulo inclui os seguinte tópicos:

- Exemplo 1: Geração de Onda Senoidal
- Exemplo 2: Geração de Onda Quadrada
- Exemplo 3: Geração de Onda de Rampa
- Exemplo 4: Geração de Onda de Pulso
- Exemplo 5: Geração de Onda de Ruído
- Exemplo 6: Geração de Onda Arbitrária
- Exemplo 7: Geração de Onda de Varredura

- Exemplo 8: Geração de Onda de Burst
- Exemplo 9: Geração de Onda AM
- Exemplo 10: Geração de Onda FM
- Exemplo 11: Geração de Onda PM
- Exemplo 12: Geração de Onda FSK
- Exemplo 13: Geração de Onda ASK
- Exemplo 14: Geração de Onda PWM.
- Exemplo 15: Geração de Onda DSB-AM.

A. Exemplo 1: Geração de Onda Senoidal

Gerar uma onda senoidal com frequência de 50kHz, amplitude de 5Vpp e compensação de 1Vdc.

Passos:

Configurar a frequência.

- 1. Pressione $[Sine] \rightarrow Freq$ e selecione a frequência que será exibida em branco.
- 2. Insira "50" pelo teclado e selecione a unidade "kHz". A frequência está configurada para 50kHz.

Configurar a amplitude.

- 1. Pressione Ampl para selecionar a amplitude que será exibida em branco.
- 2. Insira "5" pelo teclado e selecione a unidade "Vpp". A amplitude está configurada para 5Vpp.

Configurar a compensação.

- 1. Pressione Offset para selecionar a compensação que será exibida em branco.
- 2. Insira "1" pelo teclado e selecione a unidade "Vdc". A compensação está configurada para 1Vdc.

Quando a frequência, a amplitude e a compensação estão configuradas, a onda gerada é exibida como na Figura 4.1:

Sine CH2	Sine CH1	Sine
Offset	50.000,000kHz	Freq Period
1.000Vdc ±		Ampl HLevel
		Offset
CH1 Waveform	Load: Hi-Z	LLevel
Frequency	50.000,000kHz	Phase
Amp1 5.000Unn	Phase ()_()°	EqPhase
Offset <mark>1</mark> .000VdC		

Figura 4.1

B. Exemplo 2: Geração de Onda Quadrada

Gerar uma onda quadrada com frequência de 5kHz, amplitude de 2Vpp, compensação de 0Vdc e duty cycle de 30%.

Passos:

Configurar a frequência.

1. Pressione Square - Freq e selecione a frequência que será exibida em branco.

2. Insira "5" pelo teclado e selecione a unidade "kHz". A frequência está configurada para 5kHz.

Configurar a amplitude.

- 1. Pressione Ampl para selecionar a amplitude que será exibida em branco.
- 2. Insira "2" pelo teclado e selecione a unidade "Vpp". A amplitude está configurada para 2Vpp.

Configurar a compensação.

- 1. Pressione Offset para selecionar a compensação que será exibida em branco.
- 2. Insira "0" pelo teclado e selecione a unidade "Vdc". A compensação está configurada para 0Vdc.

Configurar o duty cycle.

- 1. Pressione Duty para selecionar o duty cycle que será exibido em branco.
- 2. Insira "30" pelo teclado e selecione a unidade "%". O duty cycle está configurado para 30%.

Quando a frequência, a amplitude, a compensação e o duty cycle estão configurados, a onda gerada é exibida como na Figura 4.2:

Figura 4.2

C. Exemplo 3: Geração de Onda de Rampa

Gerar uma onda de rampa com período de 10µs, amplitude de 100mVpp, compensação de 20mVdc, fase de 45° e simetria de 30%.

Passos:

Configurar o período.

- 1. Pressione Ramp Freq e selecione o Period que será exibido em branco.
- 2. Insira "10" pelo teclado e selecione a unidade "µs". O período está configurado para 10µs.

Configurar a amplitude.

- 1. Pressione Ampl para selecionar a amplitude que será exibida em branco.
- 2. Insira "100" pelo teclado e selecione a unidade "mVpp". A amplitude está configurada para 100mVpp.

Configurar a compensação.

1. Pressione Offset para selecionar a compensação que será exibida em branco.

2. Insira "20" pelo teclado e selecione a unidade "mVdc". A compensação está configurada para 20mVdc.

Configurar a fase.

- 1. Pressione Phase para selecionar a fase que será exibida em branco.
- 2. Insira "45" pelo teclado e selecione a unidade "°". A fase está configurada para 45°.

Configurar a simetria.

- 1. Pressione Symmetry para selecionar a simetria que será exibida em branco.
- 2. Insira "30" pelo teclado e selecione a unidade "%". A simetria está configurada para 30%.

Quando período, amplitude, compensação, fase e simetria estão configurados, a onda gerada é como demonstra a Figura 4.3.

Figura 4.3

D. Exemplo 4: Geração de Onda de Pulso

Gerar uma onda de pulso com frequência de 5kHz, alto nível de 5V, baixo nível de -1V, largura de pulso de 40µs e delay de 20ns.

Passos:

Configurar a frequência.

1. Pressione Pulse → Freq para selecionar a frequência que será exibida em branco.

2. Insira "5" pelo teclado e selecione a unidade "kHz". A frequência está configurada para 5kHz.

Configurar o alto nível.

- 1. Pressione Ampl e selecione o HLevel que será exibido em branco.
- 2. Insira "5" pelo teclado e selecione a unidade "V". O alto nível está configurado para 5V.

Configurar o baixo nível.

- 1. Pressione Offset e selecione o LLevel que será exibido em branco.
- 2. Insira "-1" pelo teclado e selecione a unidade "V". O baixo nível está configurado para -1V.

Configurar a largura de pulso.

- 1. Pressione PulWidth para selecionar a largura de pulso que será exibida em branco.
- 2. Insira "40" pelo teclado e selecione a unidade "µs". A largura de pulso está configurada para 40µs.

Configurar o delay.

- 1. Pressione Delay para selecionar o delay que será exibido em branco.
- 3. Insira "20" pelo teclado e selecione a unidade "ns". O delay está configurado para 20ns.

Quando frequência, alto nível, baixo nível, largura de pulso e delay estão configurados, a onda gerada é como demonstra a Figura 4.4.

Sine CH2	Pulse CH1	Pulse
		Freq
5 000Vpp +↑	5.000,000kHz>	Period
1.000Vdc *	<u>.</u>	Ampl
-1.000 Vac		HLevel
40.005		Offset
CH1 Waveform	Load: Hi-Z	LLevel
Frequency	5.000,000kHz	PulWidth
Amp1 = 5 AAAIImm	Width 40 Aus	Duty
offset-1,000Vdc	Delay ZONS	Delay

Figura 4.4

E. Exemplo 5: Geração de Onda de Ruído

Gerar uma forma de onda de ruído com variância de 1V e média de 1V.

Passos:

Configurar a amplitude.

1. Pressione Noise → Variance.

2. Insira "1" pelo teclado e selecione a unidade "V". A amplitude está configurada para 1V.

Configurar a compensação.

1. Pressione Mean.

2. Insira "1" pelo teclado e selecione a unidade "V". A compensação está configurada para 1V.

Quando amplitude e compensação estão configuradas, a onda gerada é como mostra a Figura 4.5.

Figura 4.5

F. Exemplo 6: Geração de Onda Arbitrária

Gerar uma forma de onda arbitrária (seno) com frequência de 5MHz, amplitude de 2Vrms e compensação de 0Vdc.

Passos:

Configurar o tipo de forma de onda arbitrária.

- 1. Pressione $Arb \rightarrow (1/2) \rightarrow Load$ form e selectione a forma de onda integrada.
- 3. Selecione Sinc, e pressione Select para entrar no menu principal de forma de onda arbitrária.

Configurar a frequência.

- 1. Pressione Freq e selecione a frequência que será exibida em branco.
- 2. Insira "5" pelo teclado e selecione a unidade "MHz". A frequência está configurada para 5MHz.

Configurar a amplitude.

- 1. Pressione Ampl para selecionar a amplitude que será exibida em branco.
- 2. Insira "2" pelo teclado e selecione a unidade "Vrms". A amplitude é configurada para 2Vrms.

Configurar a compensação.

- 1. Pressione Offset para selecionar a compensação que será exibida em branco.
- 2. Insira "0" pelo teclado e selecione a unidade "Vdc". A compensação está configurada para 0Vdc.

Quando tipo de forma de onda arbitrária, frequência, amplitude e compensação estão configurados, a onda gerada é como demonstra a Figura 4.6.

Figura 4.6

G. Exemplo 7: Geração de Onda de Varredura Linear

Gerar uma forma de onda senoidal de varredura cuja frequência inicie em 100Hz e termine em 10kHz. Usar o modo de trigger interno, varredura linear e time de varredura de 2s.

Passos:

Configurar a função varredura:

Pressione Sine e selecione forma de onda senoidal como a função varredura. A configuração padrão de fonte é interna. Configurar frequência, amplitude e compensação.

- 1. Pressione Freq e selecione a frequência que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 5kHz.
- 2. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 5Vpp.
- 3. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar o tempo de varredura:

Pressione Sweep → Sweep Time. Insira "2" pelo teclado e selecione a unidade "s" para configurar o tempo de varredura para 2s.

Configurar a frequência de partida:

Pressione **Start Freq**. Insira "100" pelo teclado e selecione a unidade "Hz" para configurar a frequência de partida para 100Hz.

Configurar a frequência final:

Pressione **Stop Freq**. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência final para 10kHz.

Configurar o modo varredura:

Pressione $(1/2\downarrow) \rightarrow$ Linear, e selecione Linear.

Quando todos os parâmetros descritos anteriormente estiverem configurados, a onda de varredura linear gerada será como demonstra a Figura 4.7.

Figura 4.7

H. Exemplo 8: Geração de Onda de Burst

Gerar uma forma de onda de burst de 5 ciclos, período de 3ms. Usar trigger interno e fase de 0°.

Passos:

Configurar a função burst:

Pressione Sine e selecione forma de onda senoidal como função burst. A configuração padrão da fonte é interna.

Configurar frequência, amplitude e compensação.

- 1. Pressione Freq e selecione a frequência que será exibida em branco. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 10kHz.
- 2. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "1" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 1Vpp.
- 3. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar N-Cycle:

Pressione Burst → N Cycle e selecione o modo n-cycle.

Configurar o período de burst:

Pressione **Period**, insira "3" pelo teclado e selecione a unidade "ms" para configurar o período para 3ms.

Configurar a fase inicial:

Pressione **Start Phase**, insira "0" pelo teclado e selecione a unidade "^o" para configurar a fase inicial para 0°.

Configurar os ciclos de burst:

Pressione (1/21) \rightarrow Choose Cycles, insira "5" pelo teclado e selecione a unidade "Cycle" para configurar os ciclos de burst para 5.

Configurar o delay:

Pressione Delay, insira "100" pelo teclado e selecione a unidade "µs" para configurar o delay para 100µs.

Quando todos os parâmetros descritos anteriormente estiverem configurados, a forma de onda gerada será como demonstra a Figura 4.8.

Figura 4.8

I. Exemplo 9: Geração de Onda AM

Gerar uma forma de onda AM com profundidade de 80%. A portadora é uma onda senoidal com frequência de 10kHz e a modulada é uma onda senoidal com frequência de 200Hz. Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione **Freq** e selecione a frequência que será exibida em branco. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 10kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "1" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 1Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação AM.

- 1. Pressione Mod →Type → AM e selecione AM. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "AM".
- 2. Pressione AM Freq, insira "200" pelo teclado e selecione a unidade "Hz" para configurar a frequência AM para 200Hz.
- 3. Pressione AM Depth, insira "80" pelo teclado e selecione a unidade "%" para configurar a profundidade AM para 80%.
- 4. Pressione Shape \rightarrow Sine para selectionar forma de onda senoidal como forma de onda modulada.

Quando todos os parâmetros descritos anteriormente estiverem configurados, a onda gerada será como demonstra a Figura 4.9.

Sine CH2	Sine CH1	Mod
AM Depth		AM Freq
Type AM AM Depth		
Source Internal Type		
AM Mod	Load: Hi-Z	AM
AM Denth	30.02	Shape
in septin	u v . v/.	Sine
Erec 10 000LUz	Amp 1 4 000Uss	Source
TICA TO ONORUS	T.0000hh	Internal

Figura 4.9

J. Exemplo 10: Geração de Onda FM

Gerar uma forma de onda FM. A portadora é uma onda senoidal com frequência de 10kHz e a modulada é uma onda senoidal com frequência de 1Hz e 2kHz de desvio.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 10kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "1" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 1Vpp.

4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação FM.

- 1. Pressione Mod →Type → FM para selecionar FM. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "FM".
- 2. Pressione **FM Freq**, insira "1" pelo teclado e selecione a unidade "Hz" para configurar a frequência FM para 1Hz.
- 3. Pressione FM Dev, insira "2" pelo teclado e selecione a unidade "kHz" para configurar o desvio FM como 2kHz.
- 4. Pressione Shape \rightarrow Sine para selecionar forma de onda senoidal como forma de onda modulada.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.10.

Sine CH2	Sine CH1	Mod
FM FreqDev H 100.000Hz H		FM Freq
Type FM Shape Sine		FM Dev
Source Internal		Туре
FM Mod	Load: Hi-Z	FM
FM FreeDeu	2 00024-2	Shape
In Hequeo		Sine
Ener 10 000111-	Amp 1 4 0000	Source
10.000KHZ	ddonor raint	Internal

Figura 4.10

K. Exemplo 11: Geração de Onda PM

Gerar uma forma de onda PM. A portadora é uma onda senoidal com frequência de 10kHz e a modulada é uma onda senoidal com frequência de 2kHz e ângulo de defasagem de 90°.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 10kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "1" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 1Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação PM.

- 1. Pressione Mod → Type → PM para selecionar PM. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "PM".
- 2. Pressione **PM Freq**, insira "2" pelo teclado e selecione a unidade "kHz" para configurar a frequência FM para 2kHz.

- 3. Pressione Phase Dev, insira "90" pelo teclado e selecione a unidade "°" para configurar o ângulo de defasagem em 90°.
- 4. Pressione Shape \rightarrow Sine para selecionar forma de onda senoidal como forma de onda modulada.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.11.

Figura 4.11

L. Exemplo 12: Geração de Onda FSK

Gerar uma forma de onda FSK com frequência-chave de 200Hz. A portadora é uma onda senoidal com frequência de 10kHz e frequência de salto de 500Hz.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "10" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 10kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 5Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação FSK.

- 1. Pressione (Mod)→Type → FSK para selecionar FSK. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "FSK".
- 2. Pressione Key Freq, insira "200" pelo teclado e selecione a unidade "Hz" para configurar a frequência-chave em 200Hz.
- 3. Pressione Hop Freq, insira "500" pelo teclado e selecione a unidade "Hz" para configurar a frequência de salto para 500Hz.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.12.

Figura 4.12

M. Exemplo 13: Geração de Onda ASK

Gerar uma forma de onda ASK com frequência-chave de 500Hz. A portadora é uma onda senoidal com frequência de 5kHz.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 5kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 5Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação ASK.

- 1. Pressione Mod → Type → ASK para selecionar ASK. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "ASK".
- 2. Pressione Key Freq, insira "500" pelo teclado e selecione a unidade "Hz" para configurar a frequência-chave em 500Hz.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.13.

Sine	CH2	S	ine	CH1	Mod
Key Freq	к In n	— <mark>5</mark> 00.0 л л л	DOOHz		Key Freq
Type ASK	\mathbb{V}	W			
Source Inte	rnal				Туре
ASK Mod			Load :	Hi-Z	ASK
Key Freq		<mark>5</mark> 00.()00Hz		
Ener E 000	ուս	Ampl	ΕM	\ <u>\</u>	Source
11cq 5.000	JKNZ	umbr	5.00	voobb	Internal

N. Exemplo 14: Geração de Onda PWM

Gerar uma forma de onda PWM com frequência-chave de 200Hz. A portadora é uma onda de pulso com frequência de 5kHz.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Pulse e selecione forma de onda de pulso como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 5kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "5" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 5Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.
- 5. Pressione **PuWidth** e selecione a largura de pulso que será exibida em branco. Insira "40" pelo teclado e selecione a unidade "µs" para configurar a largura de pulso em 40µs.

Configurar os parâmetros para modulação PWM.

- 1. Pressione Mod →Type →PWM para selecionar PWM. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "PWM".
- 2. Pressione Key Freq, insira "200" pelo teclado e selecione a unidade "Hz" para configurar a frequência-chave em 200Hz.
- 3. Pressione Width Dev, insira "20" pelo teclado e selecione a unidade "µs" para configurar o desvio de largura em 20µs.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.14.

Figura 4.14

O. Exemplo 15: Geração de Onda DSB-AM

Gerar uma forma de onda DSB-AM com frequência-chave de 100Hz. A portadora é uma onda senoidal com frequência de 2kHz.

Passos:

Configurar frequência, amplitude e compensação da portadora.

- 1. Pressione Sine e selecione forma de onda senoidal como onda portadora.
- 2. Pressione Freq e selecione a frequência que será exibida em branco. Insira "2" pelo teclado e selecione a unidade "kHz" para configurar a frequência em 2kHz.
- 3. Pressione Ampl para selecionar a amplitude que será exibida em branco. Insira "4" pelo teclado e selecione a unidade "Vpp" para configurar a amplitude em 4Vpp.
- 4. Pressione Offset para selecionar a compensação que será exibida em branco. Insira "0" pelo teclado e selecione a unidade "Vdc" para configurar a compensação em 0Vdc.

Configurar os parâmetros para modulação DSB-AM.

- 1. Pressione Mod → Type → DSB-AM para selecionar ASK. Note que há uma mensagem no meio da tela no lado esquerdo com a palavra "DSB-AM".
- 2. Pressione Key Freq, insira "100" pelo teclado e selecione a unidade "Hz" para configurar a frequência-chave em 100Hz.

Quando todos os parâmetros descritos acima estiverem configurados, a onda gerada será como demonstra a Figura 4.15.

Figura 4.15

10) ESPECIFICAÇÕES

A. Especificações Gerais

Display		
Tipo de Display	TFT-LCD 3,5"	
Resolução	320xRGBx240	
Profundidade de Cor	24bit	
Proporção de Contraste	350:1 (típico)	
Luminância	300cd/m² (típico)	
Alime	ntação	
Tensão	100 ~ 240VAC RMS, 45 ~ 66Hz, CAT II	
	100 ~ 127VAC RMS, 45 ~ 440Hz, CAT II	
Consumo	<30W	
Fusível	1,25A, 250V.	
Amb	iente	
Temperatura	Operação: 0°C ~ 40°C	
	Armazenamento: -20°C ~ 60°C	
Faixa de Umidade	< 35°C: ≤ 90% RH	
	35°C ~ 40°C: ≤ 60%	
Altitude	Operação: abaixo de 3.000 metros.	
	Armazenamento: abaixo de 15.000 metros.	
Ou	tros	
	Largura: 229mm.	
Dimensões	Altura: 105mm.	
	Profundidade: 281mm.	
Peso	2,6kg	
Proteção IP		
IP	2X	
Ciclo de C	Calibração	
1 ano		
Máxima Frequência de Saída	25MHz	
Canais de Saída	2	
Taxa de Amostragem	125MSa/s	
Comprimento de Forma de Onda Arbitrária	16kpts.	
Resolução de Frequência	1µHz	
Resolução Vertical	14bits	
Formas de Onda	Senoidal, Quadrada, Rampa, Pulso, Ruído Gaussiano. 48 formas de onda arbitrárias embu- tidas (incluindo DC).	
Modulação	AM, DSB-AM, FM, PM, FSK, ASK, PWM, Varre- dura, Burst.	
Contador de Frequência	Faixa de Frequência: 100mHz ~ 200MHz	
Interface Padrão	USB Host e Device.	
Interface Opcional	GPIB (IEEE-488)	

B. Especificações Elétricas

Todas essas especificações são aplicadas ao MFG-4225, a menos que sejam especificadas de outra forma. Para satisfazer a essas especificações, as seguintes condições devem ser observadas:

1. O instrumento deve operar continuamente por mais de 30 minutos dentro da faixa de temperatura de operação especificada ($18^{\circ}C \sim 28^{\circ}C$).

2. A variação de temperatura não deve exceder 5°C.

Obs: Todas as especificações são garantidas, menos as notificadas como "típico".

Frequência		
Forma de Onda	Senoidal, Quadrada, Rampa, Pulso, Ruído, Arbitrária	
Senoidal	1µHz ~ 25MHz	
Quadrada	1µHz ~ 25MHz	
Pulso	500µHz ~ 5MHz	
Rampa/Triangular	1µHz ~ 300kHz	
Ruído Branco Gaussiano	> 25MHz (-3dB)	
Arbitrária	1µHz ~ 5MHz	
Resolução	1µHz	
Precisão	Dentro de 90 dias, ±50ppm; dentro de 1 ano, 100ppm.	
Coeficiente de Temperatura	< 5ppm/°C	

Pureza do Espectro Senoidal		
Distorção Harmônica	CH1/CH2	
DC ~ 1MHz	-60dBc	
1MHz ~ 5MHz	-53dBc	
5MHz ~ 25MHz	-35dBc	
25MHz ~ 50MHz	-32dBc	
Distorção Total das Harmônicas da Forma de Onda	DC ~ 20kHz, 1Vpp < 0,2%	
Sinal Simulado (não-harmônica)	DC ~ 1MHz < -70dBc	
	1MHz ~ 10MHz < -70dBc+6dB/espectro de fase	
Ruído de Fase	Compensação de 10kHz, -108dBc/Hz (valor típi-	
	CO)	

Forma de Onda Quadrada		
Tempo de Subida/Descida		< 12ns (10% ~ 90%)
Oversh	oot	< 5% (típico, 1kHz, 1Vpp)
	1µHz ~ 10MHz	20% ~ 80%
Duty Cycle	> 10MHz ~ 20MHz	40% ~ 60%
	> 20MHz ~ 25MHz	50%
Assimetria (50% Duty Cycle)		1% do período+20ns (típico, 1kHz, 1Vpp)
Jitter		0,1% do período (típico, 1kHz, 1Vpp)

Forma de Onda Triangular/de Rampa	
Linearidade	< 0,1% do valor de saída do pico (típico, 1kHz, 1Vpp, 100% simétrico).
Simetria	0% ~ 100%

Forma de Onda de Pulso	
Largura de Pulso	1800s, resolução mínima de 8ns, máxima de 16ns.
Tempo de Subida/Descida (10% ~ 90%, típico, 1kHz, 1Vpp)	7ns
Duty Cycle	Resolução de 0,1%
Overshoot	< 5%
Jitter (pico-a-pico)	8ns

Forma de Onda Arbitrária			
Comprimento da Forma de Onda	16kpts.		
Resolução Vertical	14bits		
Taxa de Amostragem	125MSa/s		
Tempo Mínimo de Subida/Descida	7ns (típico)		
Jitter (pico-a-pico)	8ns (típico)		
Armazenamento em memória RAM não-volátil (10 no total)	10 formas de onda.		

Especificações de Saída			
Saída	CH1 CH2		
Amplitude	2mVpp ~ 10Vpp (50Ω, ≤10MHz) 2mVpp ~ 5Vpp (50Ω, >10MHz) 4mVpp ~ 20Vpp (alta impedân- cia, ≤10MHz) 4mVpp ~ 10Vpp (alta impedân- cia, >10MHz).	2mVpp ~ 3Vpp (50Ω) 4mVpp ~ 6Vpp (alta impedân- cia)	
Precisão Vertical (100kHz se- noidal)	±(0,3dB+1mVpp do valor confi- gurado)	±(0,3dB+1mVpp do valor confi- gurado)	
Nivelamento de Amplitude (comparado a 100kHz senoidal, 5Vpp)	±0,3dB		
Desvio de Fase do Canal	< 400ps (valor clássico, senoidal, 50MHz, 4Vpp)		
Cross-Talk	< -70dBc		

Compensação DC			
Faixa (DC)	±5V (50Ω) ±1,5V (50Ω)		
	±10V (alta impedância)	±3V (alta impedância)	
Precisão (DC)	±(valor de compensação ±(valor de compensação		
	configurado x1%+3mV)	configurado x1%+3mV)	

Saída de Forma de Onda			
Impedância	50Ω (típico)		
Proteção	Proteção contra curto-circuito	Proteção contra curto-circuito	

Modulação AM (CH1/CH2)			
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Fonte	Interna/Externa		
Modulação da Forma de Onda	Senoidal, Quadrada, Rampa, Ruído, Arbitrária (2mHz ~20kHz)		
Profundidade de Modulação	0% ~ 120%		
Modulação	o FM (CH1/CH2)		
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Fonte	Interna/Externa		
Modulação da Forma de Onda	Senoidal, Quadrada, Rampa, Ruído, Arbitrária (2mHz ~ 20kHz)		
Desvio de Frequência	0 ~ 0,5 da largura de banda com resolução de 10µHz		
Modulação	o PM (CH1/CH2)		
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Fonte	Interna/Externa		
Modulação da Forma de Onda	Senoidal, Quadrada, Rampa, Ruído, Arbitrária (2mHz ~ 20kHz)		
Desvio de Fase	0 ~ 360°, resolução de 0,1°		
Modulação FSK (CH1/CH2)			
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Fonte	Interna/Externa		
Modulação da Forma de Onda	50% do ciclo de trabalho da forma de onda quadra- da (2mHz ~ 50kHz)		
Modulação	ASK (CH1/CH2)		
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Fonte	Interna/Externa		
Modulação da Forma de Onda	50% do ciclo de trabalho da forma de onda quadra- da (2mHz ~ 50kHz)		
Modulação	PWM (CH1/CH2)		
Frequência	500µHz ~ 20kHz		
Fonte	Interna/Externa		
Modulação da Forma de Onda	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Faixa de Modulação Externa	-6V ~ 6V (máximo desvio de largura)		
Varredura (CH1/CH2)			
Portadora	Senoidal, Quadrada, Rampa, Arbitrária (exceto DC)		
Тіро	Linear/Logarítmica		
Direção	Para cima/para baixo		
Tempo de Varredura	1ms ~ 500s		
Fonte de Disparo	Manual, Externa, Interna		

Burst (CH1/CH2)		
Forma de Onda	Senoidal, Quadrada, Rampa, Pulso, Arbitrária (exceto DC)	
Тіро	Contador (1 ~ 50.000 períodos), infinito, gated.	
Fase Inicial/Final	0° ~ 360°	
Período Interno	1µs ~ 500s	
Fonte Gated	Disparo interno	
Fonte de Disparo	Manual, Externa ou Interna	

Conector do Painel Traseiro			
Modulação Externa ±6V=100% da modulação, Imper			
	de entrada > 5kΩ.		
Disparo Externo	Compatível com TTL		
Obs.: Não insira mais que ±6V na entrada de tensão externa, caso contrário o instrumento será			
danificado.			

Entrada de Trigger			
Nível de Entrada Compatível com TTL			
Declive Para cima e para baixo (opcional)			
Largura de Pulso	> 100ns		
Impedância de Entrada > 5kΩ, acoplamento DC			

Saída de Trigger			
Nível de Tensão	Compatível com TTL		
Largura de Pulso > 400ns			
Impedância de Saída	50Ω (típico)		
Frequência Máxima	1MHz		

Saída SYNC			
Nível de Tensão	Compatível com TTL		
Largura de Pulso	> 50ns		
Impedância de Saída	50Ω (típico)		
Frequência Máxima 2MHz			

Contador de Frequência		
Medida	Frequência, Período, Largura de Pulso Positiva/	
	Negativa, Duty Cycle.	
Faixa de Frequência	Canal Único: 100mHz ~ 200MHz.	
Resolução de Frequência	6bits/s	
Faixa de tensão (sinal não-modulado)		

		Faixa de Compensa- ção DC	±1,5VDC
	Acoplamento DC	100mHz ~ 100MHz	50mVrms ~ ±2,5V
Manual		100MHz ~ 200MHz	100mVrms ~ ±2,5V
	Acoplamento AC	1Hz ~ 100MHz	50mVrms ~ 5Vpp
		100MHz ~ 200MHz	100mVrms ~ 5Vpp
Largura de Pulso e me- dida de duty cycle	1Hz ~ 10MHz (50mVrms ~ 5Vpp)		
Ajuste de Entrada	Impedância de Entrada 1MΩ		
	Mode de Acoplamento	AC, DC	
	Rejeição de Alta Frequ- ência	ON/	OFF
Faixa de Nível de Tri- gger		-3V ~ 1,8V	

11) MANUTENÇÃO

ADVERTÊNCIA

Para evitar danos ao instrumento, não exponha-o a sprays, líquidos ou solventes.

Não armazene ou opere o instrumento onde o display possa ficar exposto diretamente à luz solar por um longo período.

A. Inspeção Geral

Após receber seu instrumento, por favor, inspecione-o conforme as seguintes instruções:

1. Inspecione o gabinete.

Guarde o gabinete danificado e o material de amortecimento até que o conteúdo da caixa tenha sido verificado por completo e o instrumento verificado mecânica e eletricamente.

2. Inspecione o instrumento por completo.

No caso de haver algum defeito ou dano mecânico, ou até mesmo o instrumento não estar operando corretamente, notifique seu representante Minipa.

No caso do gabinete estar danificado ou o material de amortecimento apresentar sinais de desgaste, notifique a transportadora e seu revendedor Minipa. Guarde o material para a inspeção da transportadora.

B. Solução de Problemas

A. Se, após ligar o instrumento, a tela continuar escura, siga os passos abaixo:

- 1. Verifique a conexão do cabo.
- 2. Assegure-se que a chave de alimentação está ligada.
- 3. Após as inspeções acima, reinicie o instrumento.
- 4. Se o problema persistir, entre em contato com uma assistência técnica autorizada Minipa.

B. Se não há sinal de onda na saída após configurar os parâmetros, por favor, siga as instruções abaixo:

- 1. Verifique se o cabo BNC está conectado ao canal de saída.
- 2. Verifique se o botão de saída está ligado.
- 3. Se o problema persistir, entre em contato com uma assistência técnica autorizada Minipa.

C. Limpeza

ADVERTÊNCIA

Para evitar danos à superfície do instrumento, não utilize quaisquer produtos abrasivos ou solventes.

Se o instrumento necessitar de limpeza, desconecte todos os cabos e limpe-o com detergente suave e água. Assegure-se de que o instrumento está completamente seco antes de reconectar a alimentação. Para limpar a surperfície do instrumento, realize o seguinte procedimento:

- 1. Remova a poeira superficial com um pano macio. Tenha cuidado para não riscar o plástico transparente sobre o display.
- 2. Use um pano macio levemente umedecido para limpar o instrumento.

O instrumento foi cuidadosamente ajustado e inspecionado. Se apresentar problemas durante o uso normal, será reparado de acordo com os termos da garantia.

GARANTIA

SÉRIE Nº

MODELO MFG-4225

- 1- Este certificado é válido por 36 (trinta e seis) meses a partir da data da aquisição.
- 2- Será reparado gratuitamente nos seguintes casos:

A) Defeitos de fabricação ou danos que se verificar por uso correto do aparelho no prazo acima estipulado.

B) Os serviços de reparação serão efetuados somente no departamento de assistência técnica por nós autorizado.

C) Aquisição for feita em um posto de venda credenciado da Minipa.

3- A garantia perde a validade nos seguintes casos:

A) Mau uso, alterado, negligenciado ou danificado por acidente ou condições anormais de operação ou manuseio.

B) O aparelho foi violado por técnico não autorizado.

- **4-** Esta garantia não abrange fusíveis, pilhas, baterias e acessórios tais como pontas de prova, bolsa para transporte, termopar, etc.
- 5- Caso o instrumento contenha software, a Minipa garante que o software funcionará realmente de acordo com suas especificações funcionais por 90 dias. A Minipa não garante que o software não contenha algum erro ou que venha a funcionar sem interrupção.
- 6-A Minipa não assume despesas de frete e riscos de transporte.
- 7- A garantia só será válida mediante o cadastro deste certificado devidamente preenchido e sem rasuras.

Nome:	
Endereço:	Cidade:
Estado:	Fone:
Nota Fiscal N°:	Data:
N° Série:	
Nome do Revendedor:	

A. Cadastro do Certificado de Garantia

O cadastro pode ser feito através de um dos meios a seguir:

- Correio: Envie uma cópia do certificado de garantia devidamente preenchido

pelo correio para o endereço.

Minipa do Brasil Ltda.

Att: Serviço de Atendimento ao Cliente

Av. Carlos Liviero, 59 - Vila Liviero

CEP: 04186-100 - São Paulo - SP

- Fax: Envie uma cópia do certificado de garantia devidamente preenchido através do fax 0xx11-5078-1885.
- e-mail: Envie os dados de cadastramento do certificado de garantia através do endereço sac@minipa.com.br.
- Site: Cadastre o certificado de garantia através do endereço http://www.minipa.com.br/sac.

IMPORTANTE

Os termos da garantia só serão válidos para produtos cujos certificados forem devidamente cadastrados. Caso contrário será exigido uma cópia da nota fiscal de compra do produto.

Manual sujeito a alterações sem aviso prévio.

Revisão: 00 Data Emissão: 07/03/2013

sac@minipa.com.br tel: +55 (11) 5078 1850

Dúvidas? Consulte: www.minipa.com.br Acesse Fórum Sua resposta em 24 horas

MINIPA DO BRASIL LTDA. Av. Carlos Liviero, 59 - Vila Liviero 04186-100 - São Paulo - SP - Brasil

MINIPA DO BRASIL LTDA. Rua Dna. Francisca, 8300 - Bloco 4 - Módulo A 89219-600 - Joinville/SC - Brasil

MINIPA ELECTRONICS USA INC.

10899 - Kinghurst # 220 Houston - Texas - 77099 - USA